ANSYS Mesh Connections–Another Tool for Meshing Surface Assemblies

Categories:

Anyone who has had to mesh shell assemblies has probably run into trouble with edges that don’t quite line up, edges that meet in the middle of faces and other problems that make the meshing process difficult.  Often geometry operations were required to reconcile those problems and many times significant effort was required to get a continuous mesh.

Another historically used tool to connect shell assemblies was the use of constraint equations to connect edge nodes to surface nodes on the finite element level.  More recently, advances in contact technology have allowed for the use of nonlinear contact elements to connect shell assembly meshes.  Both of those techniques, while useful, have some drawbacks.  For example, constraint equations do not support large rotations of the geometry as the direction of application does not change as nodes rotate.  Also, contact elements increase the computational expense if they can otherwise be eliminated.

ANSYS, Inc. now provides us with another technique for handling shell assembly meshing, called Mesh Connections.  First available in version 13.0 and enhanced in version 14.0, mesh connections use the mesher itself to connect shell assemblies toward the goal of getting a continuous or conformal mesh across the surface bodies that make up the assembly.

Consider this boat hull example.  It consists of panel surfaces defining the hull as well as some stiffening ribs.  All geometry is composed of surface bodies. 

image

Some of the ribs line up with edges in the hull surfaces, while others do not as shown in the close up image shown below.

image

We can now create mesh connections in the Connections branch after loading this geometry into the Mechanical editor in Workbench 14.0.

image

Upon generating the mesh, the mesher will attempt to create a continuous or conformal mesh even though we have do not have intersecting geometry. 

image

With the default settings, we can see in this image that it did a fairly good job of creating the mesh for the ribs which do not intersect with the hull surfaces.  Nodes on the hull surface were adjusted so that they connect to the rib geometry. 

image

In this case with relatively little effort we were able to obtain a continuous mesh between the ribs and the hull, even though the several of the ribs shared no intersections with the hull surfaces.  In fact, the mesh connections were able to overcome small gaps in between the geometry as well.

In 14.0, the mesh connections are generally performed after the initial mesh is created by default.  This means that if changes are made only to mesh connection settings, the remeshing operation is fairly quick since the initial mesh does not need to be regenerated in most cases.

Note that mesh connections exist in the Connections branch, not the Mesh branch. The mesh connection setup works in similar fashion to contact region creation in that searching for edges/faces to connect is based on proximity. The proximity value can be controlled via a slider or by entering an explicit distance, both available in the Mesh Connections details window.

To activate mesh connections, highlight the Connections branch and click on the Connection Group button in the context sensitive menu above the outline tree.  Change the Connection Type to Mesh Connection in the details.

image

Next right click on the Connections branch and select Create Automatic Connections.  You may need to adjust the auto detection tolerance in the details to make sure the tolerance distance is large enough to detect desired gaps between edges and faces or edges and edges for the mesh connection to work.

If any contact regions have been automatically created that you want to replace with mesh connections, delete or suppress them.  You have the choice of automatically creating mesh connections or manually creating them.  Both options are available by right clicking. 

image

In the example shown here, mesh connections are edge to face.  Edge to edge mesh connections are also available.

With a couple of mesh settings added, we can obtain a better mesh:

image

 

Note that the hull surface nodes have moved a bit in order to allow for the mesh connections with the ribs.  Here is a view of the outer hull surface in the mesh connection region:

image

There are other considerations as well, such as which geometric entities should be the master or slave.  In general slave geometry is ‘pinched’ into the master geometry.  Also, mesh connections can be setup manually for cases where the auto detection is not appropriate or is not providing the desired level of control.  Note that the mesh can end up as an approximation of the geometry since the mesh will have moved to close gaps.  Here is an example:

image

In summary, mesh connections are another tool that are available to us in ANSYS meshing capabilities, having value for shell assemblies.  In cases where shell geometry edges do not meet at intersections we can still obtain a continuous mesh without having to perform additional geometry operations.  Mesh connections can be faster than using contact elements at the edges as well.  There are other features and considerations for mesh connections which are explained in the ANSYS 14.0 Help.  We recommend you give them a try if you are tasked with simulating shell type structures.

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT Pulse Newsletter Screen Grab from March 2023

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

05/31/2023

Driving Automotive Innovation with Additive - Webinar

05/24/2023

Hill Air Force Base Tech Expo

05/24/2023

Structural Updates in Ansys 2023 R1 (3) – Structural Optimization & Ex

05/23/2023

CROSSTALK 2023: Emerging Opportunities for Advanced Manufacturing Smal

05/10/2023

Signal & Power Integrity Updates in Ansys 2023 R1 - Webinar

04/26/2023

Additive Manufacturing Updates in Ansys 2023 R1 - Webinar

04/20/2023

38th Space Symposium Arizona Space Industry

More Info

04/19/2023

38th Space Symposium
Arizona Space Industry

04/19/2023

Additive Aids for Manufacturing - Webinar

04/18/2023

38th Space Symposium
Arizona Space Industry

04/17/2023

38th Space Symposium

04/13/2023

Venture Madness 2023

04/12/2023

Fluid Meshing & GPU-Solver Updates in Ansys 2023 R1 - Webinar

03/29/2023

8th Thermal and Fluids Engineering Conference

03/29/2023

Structural Updates in Ansys 2023 R1 - Composites, Fracture & MAPDL

03/28/2023

8th Thermal and Fluids Engineering Conference

03/27/2023

8th Thermal and Fluids Engineering Conference

03/26/2023

8TH Thermal and Fluids Engineering Conference

03/24/2023

Arizona BioPreneur Conference | Spring 2023

03/22/2023

2023 Arizona MedTech Conference

03/22/2023

Optimize Jigs & Fixtures with Additive - Webinar

03/15/2023

3D Design Updates in Ansys 2023 R1 - Webinar

03/08/2023

Competitive Advantages of 1D/3D Coupled Simulation - Webinar

03/01/2023

High Frequency Updates in Ansys 2023 R1 - Webinar

02/22/2023

Additive Advantages in Aerospace - Webinar

02/15/2023

Structural Updates in Ansys 2023 R1 (1) - Webinar

02/09/2023

IME 2023: MD&M | WestPack | ATX | D&M | Plastek

02/08/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

02/07/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

01/27/2023

Arizona Photonics Days, 2023

01/26/2023

Arizona Photonics Days, 2023

01/26/2023

TIPE 3D Printing | 2023

01/26/2023

Venture Cafe Phoenix Talent Night - Job Fari

01/26/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/25/2023

Arizona Photonics Days, 2023

01/25/2023

Building A.M.- Utah: Kickoff!

01/25/2023

TIPE 3D Printing | 2023

01/25/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

TIPE 3D Printing | 2023

01/18/2023

2023 AZ Tech Council Golf Tournament

12/21/2022

Simulation Best Practices for 5G Technology - Webinar

12/14/2022

Digital Twins Updates in Ansys 2022 R2 - Webinar

12/08/2022

Tech the Halls - AZ Tech Council Holiday Mixer

12/07/2022

Electric Vehicle and Other Infrastructure Update Panel

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

10/17/2022

Experience Stratasys Truck Tour - Clearfield Utah

10/14/2022

ASU School of Manufacturing Systems and Networks - Formal Opening Cele

10/14/2022

Experience Stratasys Truck Tour - Midvale Utah

10/12/2022

Experience Stratasys Truck Tour - Littleton Colorado

10/06/2022

Fluids Updates in Ansys 2022 R2 - Webinar

10/05/2022

Experience Stratasys Truck Tour - Colorado Springs

09/29/2022

White Hat Life Science Investor Conference - 2022

09/28/2022

2022 AZBio Awards

09/28/2022

Simulation Best Practices for Rotating Machinery Design & Development

09/21/2022

ExperienceIT NM 2022

09/21/2022

Additive Updates in Ansys 2022 R2 - Webinar

09/14/2022

Rocky Mountain Life Sciences Investor & Partnering Conference

09/08/2022

Ansys Optics Simulation User Group Meeting - Virtual

09/08/2022

Ansys Optics Simulation User Group Meeting

09/07/2022

SI & PI Updates in Ansys 2022 R2 - Webinar

08/31/2022

Simulation Best Practices for Developing Medical Devices - Webinar

08/24/2022

Mechanical Updates in Ansys 2022 R2 - Webinar

08/10/2022

Tucson after5 Tech Mixer: Ruda-Cardinal

08/05/2022

Flagstaff Tech Tour, 2022

08/02/2022

2022 CEO Leadership Retreat

08/01/2022

2022 CEO Leadership Retreat

07/27/2022

Thermal Integrity Updates in Ansys 2022 R1 - Webinar

07/20/2022

Simulation Best Practices for the Pharmaceutical Industry - Webinar

07/14/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

Additive & Structural Optimization Updates in Ansys 2022 R1 - Webinar

07/07/2022

Arizona AADM Conference, 2022

06/29/2022

LS-DYNA Updates & Advancements in Ansys 2022 R1 - Webinar

06/23/2022

Simulation Best Practices for Wind Turbine Design - Webinar

06/15/2022

MAPDL Updates & Advancements in Ansys 2022 R1 - Webinar

06/01/2022

Mechanical Updates in Ansys 2022 R1 - pt. 2 Webinar

05/26/2022

Modelling liquid cryogenic rocket engines in Flownex - Webinar

05/25/2022

SMR & Advanced Reactor 2022

05/25/2022

05/24/2022

SMR & Advanced Reactor 2022

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: