Caps and Limits on Hardware Resources in Microsoft Windows and Red Hat Enterprise Linux

Categories:

windows-caps (Revised and updated February 10, 2014 to include pertinent, relevant Windows Server 2012 information as it relates to the world of numerical simulation)

Hi – One of our more popular blog articles from January 14, 2011. It has been over three years now and the blog article needs a refresh. It seems that as operating system provider’s release a new OS iteration, for Windows Operating System or Linux, that this may contribute to confusion when selecting the proper licensing for the numerical simulation computers physical hardware.

Hopefully this updated blog article will assist you in making sure your numerical simulation machines are licensed properly.

Sometime around 3am in October 2010. I found myself beating my head up against a server rack. I was frustrated with trying to figure out what was limiting my server hardware. I was aware of a couple limits that Microsoft had placed into its OS software. However, I had no idea how far reaching the limits were. I researched into two manufactures of two of the most used Operating Systems on the planet. I figured it would be best if I had a better understanding of these hardware limits. The physical socket and memory limit caps that are placed on the hardware by two of the most popular Operating Systems on the planet: Microsoft Windows 7, Windows Server 2008 R2, Windows Server 2012 and Red Hat Enterprise Linux.

So now let us fast-forward over three years, not much has changed because change is constant. The new Windows Server 2012 changes up the naming convention on us IT geeks. So pay attention because the Windows Server Standard or Enterprise edition you may have been used to has changed.

Limits on Cores, RAM, and USERS by Operating System

  • Microsoft Windows Operating Systems
    • Windows 7
      • Professional / Enterprise / Ultimate
        • Processor: 2 Socket limit (many cores)
        • Core limits:
          • 64-bit: 256 max quantity of cores in 1 physical processor
          • 32-bit: 32 cores max quantity of cores in 1 physical processor
        • RAM: 192 GB limit to amount of accessible
      • Home Premium
        • RAM: 16GB
      • Home Basic
        • RAM: 8GB
      • Starter Edition
        • RAM: 2 GB
    • Windows Server 2008
      • Standard & R2
        • Processor: 4 socket limit – (many cores)
          • (4 – Parts x 12core) = 48 cores
        • RAM: 32 GB
      • Windows Server 2008 R2 Foundation  (R2 releases are 64-bit only)
        • RAM: 128 GB
      • HPC Edition 2008 R2 (R2 releases are 64-bit only)
        • RAM: 128 GB
      • Windows Server 2008 R2 Datacenter (R2 releases are 64-bit only)
        • Processor: 8 socket limit
        • RAM: 2TB
      • Windows Server 2008 R2 Enterprise (R2 releases are 64-bit only)
        • Processor: 8 socket limit
        • RAM: 2TB
    • Windows Server 2012
      • Foundation
        • Processor: 1 socket licensed – (many cores)
        • RAM: 32 GB
        • User Limit: 15 users
      • Essentials
        • Processor: 2 socket licensed – (many cores)
        • RAM: 64 GB
        • User Limit: 25 users
      • Standard
        • Processor:  4 socket licensed* – (many cores)
        • RAM: 4TB
        • User Limit: unlimited
      • Datacenter
        • Processor: 4 socket licensed* – (many cores)
        • RAM: 4TB
        • User Limit: unlimited
      • R2
        • Processor: 4 socket licensed* – (many cores)
        • RAM: 4TB
        • User Limit: unlimited
  • Red Hat Enterprise Linux – 64-bit
    • Red Hat defines a logical CPU as any schedulable entity. So every core/thread in a multi-core/thread processor is a logical CPU
    • This information is by Product default.  Not the maximums of a fully licensed/subscribed REHL product.
    • Desktop
      • Processor: 1-2 CPU
      • RAM: 64 GB
    • Basic
      • Processor: 1-2 CPU
      • RAM: 16 GB
    • Enterprise
      • Processor: 1-8 CPU
      • RAM: 64 GB
    • NOTE: Red Hat would be happy to create custom subscriptions with yearly fees for other configurations to fit your specific environment. Please contact Red Hat to check on costs.

Okay great but what operating system platforms can I use with ANSYS R15?

ANSYS 15.0 Supported Platforms

ANSYS 15.0 is the currently released version. The specific operating system versions supported by ANSYS 15.0 products and License Manager are documented and posted at: 
   www.ansys.com/Support/Platform+Support.

ANSYS 15.0 includes support for the following:

  • Windows XP and Windows 7 (32-bit and 64-bit Professional and Enterprise versions)
  • Windows 8 (64-bit Professional and Enterprise versions)
  • Windows Server 2008 R2 Enterprise
  • Windows HPC Server 2008 R2 (64-bit)
  • Windows Server 2012 Standard version
  • Red Hat Enterprise Linux (RHEL) 5.7-5.9 and 6.2-6.4 (64-bit)
  • SUSE Enterprise Linux Server and Desktop (SLES / SLED) 11 SP1-SP2 (64-bit)

Not all applications are supported on all of these platforms. See detailed information, by product, at the URL noted above.

Final Thoughts

Approximate additional licensing cost to License Windows Server 2012 for a Quad Socket CPU motherboard:

  • Windows Server 2012 Foundation: Please call your OEM partner
  • Windows Server 2012 Essentials: $429 + User Client Access Licensing $$$
  • Windows Server 2012 Standard:  $ 1,500  + User Client Access Licensing $$$
  • Windows Server 2012 Datacenter: $ 10,500 + User Client Access Licensing $$$

References

 

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

09/27/2023

2023 AZ Bio Awards

09/26/2023

Experience Stratasys Truck Tour - Houston

09/22/2023

AIAA Rocky Mountain Section Technical Symposium 2023

09/22/2023

Experience Stratasys Truck Tour - Dallas, TX

09/21/2023

Accelerating the Energy Transition through Simulation

09/20/2023

3D Printing vs. CNC Machining - Webinar

09/13/2023

Maxwell Updates in Ansys 2023 R2 - Webinar

09/12/2023

Sandia Science & Technology Park 25th Anniversary

09/12/2023

Experience Stratasys Truck Tour - Tempe, AZ

09/08/2023

26th Annual New Mexico Flying 40 Awards

09/08/2023

New Mexico Tech Summit

09/07/2023

New Mexico Tech Summit

08/30/2023

Structures Updates in Ansys 2023 R2 (1) - Mechanical, Post & Graphics

08/23/2023

Improved Injection Molding with Additive - Webinar

08/22/2023

SPIE Optics & Photonics Exhibition 2023

08/16/2023

Fluids Updates in Ansys 2023 R2 - Webinar

08/04/2023

Experience Stratasys Truck Tour - Salt Lake City, Utah

08/01/2023

Experience Stratasys Truck Tour - Denver Colorado

07/26/2023

Solving Supply Chain Issues with Additive - Webinar

07/25/2023

Arizona Tech Leadership Golf Tournament

07/24/2023

Arizona Tech CEO Leadership Retreat

07/19/2023

System Automation & Optimization Updates in Ansys 2023 R1 - Webinar

07/13/2023

2023 AEROSPACE, AVIATION, DEFENSE AND MANUFACTURING CONFERENCE

07/12/2023

Materials Updates in Ansys Granta 2023 R1 - Webinar

06/30/2023

Turbo Expo 2023

06/29/2023

Turbo Expo 2023

06/28/2023

Turbo Expo 2023

06/28/2023

Revolutionize Packaging Design with Additive - Webinar

06/27/2023

Turbo Expo 2023

06/27/2023

2023 E-MOBILITY AND CLEAN ENERGY SUMMIT

06/26/2023

Turbo Expo 2023

06/21/2023

Optics Updates in Ansys 2023 R1 - Webinar

06/07/2023

LS-DYNA Updates in Ansys 2023 R1 - Webinar

05/31/2023

Driving Automotive Innovation with Additive - Webinar

05/24/2023

Hill Air Force Base Tech Expo

05/24/2023

Structural Updates in Ansys 2023 R1 (3) – Structural Optimization & Ex

05/23/2023

CROSSTALK 2023: Emerging Opportunities for Advanced Manufacturing Smal

05/10/2023

Signal & Power Integrity Updates in Ansys 2023 R1 - Webinar

04/26/2023

Additive Manufacturing Updates in Ansys 2023 R1 - Webinar

04/20/2023

38th Space Symposium Arizona Space Industry

More Info

04/19/2023

38th Space Symposium
Arizona Space Industry

04/19/2023

Additive Aids for Manufacturing - Webinar

04/18/2023

38th Space Symposium
Arizona Space Industry

04/17/2023

38th Space Symposium

04/13/2023

Venture Madness 2023

04/12/2023

Fluid Meshing & GPU-Solver Updates in Ansys 2023 R1 - Webinar

03/29/2023

8th Thermal and Fluids Engineering Conference

03/29/2023

Structural Updates in Ansys 2023 R1 - Composites, Fracture & MAPDL

03/28/2023

8th Thermal and Fluids Engineering Conference

03/27/2023

8th Thermal and Fluids Engineering Conference

03/26/2023

8TH Thermal and Fluids Engineering Conference

03/24/2023

Arizona BioPreneur Conference | Spring 2023

03/22/2023

2023 Arizona MedTech Conference

03/22/2023

Optimize Jigs & Fixtures with Additive - Webinar

03/15/2023

3D Design Updates in Ansys 2023 R1 - Webinar

03/08/2023

Competitive Advantages of 1D/3D Coupled Simulation - Webinar

03/01/2023

High Frequency Updates in Ansys 2023 R1 - Webinar

02/22/2023

Additive Advantages in Aerospace - Webinar

02/15/2023

Structural Updates in Ansys 2023 R1 (1) - Webinar

02/09/2023

IME 2023: MD&M | WestPack | ATX | D&M | Plastek

02/08/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

02/07/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

01/27/2023

Arizona Photonics Days, 2023

01/26/2023

Arizona Photonics Days, 2023

01/26/2023

TIPE 3D Printing | 2023

01/26/2023

Venture Cafe Phoenix Talent Night - Job Fari

01/26/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/25/2023

Arizona Photonics Days, 2023

01/25/2023

Building A.M.- Utah: Kickoff!

01/25/2023

TIPE 3D Printing | 2023

01/25/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

TIPE 3D Printing | 2023

01/18/2023

2023 AZ Tech Council Golf Tournament

12/21/2022

Simulation Best Practices for 5G Technology - Webinar

12/14/2022

Digital Twins Updates in Ansys 2022 R2 - Webinar

12/08/2022

Tech the Halls - AZ Tech Council Holiday Mixer

12/07/2022

Electric Vehicle and Other Infrastructure Update Panel

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

10/17/2022

Experience Stratasys Truck Tour - Clearfield Utah

10/14/2022

ASU School of Manufacturing Systems and Networks - Formal Opening Cele

10/14/2022

Experience Stratasys Truck Tour - Midvale Utah

10/12/2022

Experience Stratasys Truck Tour - Littleton Colorado

10/06/2022

Fluids Updates in Ansys 2022 R2 - Webinar

10/05/2022

Experience Stratasys Truck Tour - Colorado Springs

09/29/2022

White Hat Life Science Investor Conference - 2022

09/28/2022

2022 AZBio Awards

09/28/2022

Simulation Best Practices for Rotating Machinery Design & Development

09/21/2022

ExperienceIT NM 2022

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: