ASME OMAE2015 Paper: The Importance of Grid Convergence Studies in the Design of a Semi-Submersible Platform

Categories:

asme-papers

Vibration induced by vortices in off shore oil rigs are a significant area of concern, and understanding them is a major area of research. In this paper, PADT’s Clinton Smith, PhD, and Tyler Smith are joined by Lubeena Rahumathulla from ANSYS, Inc. to describe how they used ANSYS FLUENT to model this situation. Get the paper here: proceedings.asmedigitalcollection.asme.org/proceeding?articleid=2465497 

Abstract:

omae-2015-FLUENT-off-shore-flow The design of semi-submersible platforms for offshore oil and gas operations requires an iterative process between early-stage design, numerical simulation, measurements, and full-scale design. Early stage designs are evaluated using numerical simulations, which are typically validated using measurements of a scaled model tested in a wave tank. Full-scale semi-submersibles present a unique challenge, because of the sheer size of the structure. Since VIV measurements of full scale structures are not possible, numerical simulation plays an important role for evaluating vortex-induced vibration (VIV) effects in the appropriate physical regime. The quantification of error in numerical simulation results is limited to verification-type studies, in which the error is reduced by converging the solution on the computational grid. The importance of grid convergence studies in this field cannot be understated, since it is the only way to judge solution accuracy in the absence of measurement data at the full scale. In this paper, a method for a grid convergence study of vortex-induced vibration (VIV) of a model scale semi-submersible platform is presented, in which solutions are obtained using the ANSYS Fluent CFD solver. Five levels of grid refinement are used, with the finest mesh acting as the reference solution for the coarser four levels. Qualitative results of vorticity, pressure and Q-criterion (vortex identification) are presented. Quantitative results such as the nominal amplitude (A/D) of the sway motion are used for judging the convergence of the solution as the grid is refined.

 

Join PADT and the global Ansys user community for this year’s online conference.

Multiple Tracks | Every Physics & Every Industry

Hear from Ansys Leadership | Presentations from Customers on How They Use Ansys

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

Share this post:

Upcoming Events

Jul 08
, 2025
Heavy Traction Systems – How to Model an Alternator - Webinar
Jul 09
, 2025
Ansys Virtual Workshop - Introducing FreeFlow: A Mesh-less, GPU-powered SPH Solver
Jul 11
, 2025
2025 Aerospace, Aviation, Defense and Manufacturing Conference
Jul 15
, 2025
Balancing Cost and Performance in 3D Printing
Jul 16
, 2025
HFSS Updates in Ansys 2025 R1 - Webinar
Jul 16
- Jul 17
, 2025
Ansys Simulation World 2025
Jul 22
, 2025
Heavy Industry – How to Model a Switched Reluctance Motor - Webinar
Jul 23
, 2025
Experience Stratasys Truck Tour - Salt Lake City, Utah
Aug 10
- Aug 13
, 2025
SmallSat 2025

Search the PADT Site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: