Technology Trends in Fused Deposition Modeling

A few months ago, I did a post on the Technology Trends in Laser-based Metal Additive Manufacturing where I identified 5 key directions that technology was moving in. In this post, I want to do the same, but for a different technology that we also use on a regular basis at PADT: Fused Deposition Modeling (FDM).

1. New Materials with Improved Properties

Many companies have released and are continuously developing composite materials for FDM. Most involve carbon fibers and are discussed in this review. Arevo Labs and Mark Forged are two of many companies that offer composite materials for higher performance, the table below lists their current offerings (CF = Carbon Fiber, CNT = Carbon Nano Tubes). Virtual Foundry are also working on developing a metal rich filament (with about 89% metal, 11% binder polymer), which they claim can be used to make mostly-metal parts for non-functional purposes using existing FDM printers and a heat treatment to vaporize the binder. In short, while ABS and PLA dominate the market, there is a wide range of materials commercially available and this list is growing each year.

Company Composition
Arevo Labs CF, CNT in PAEK
CF in PEEK
Fiberglass in PARA
Mark Forged Micro-CF in Nylon
CF
Fiberglass
Fiberglass (High Strength High Temperature)
Kevlar

2. Improved Properties through Process Enhancements

Even with newer materials, a fundamental problem in FDM is the anisotropy of the parts and the fact that the build direction introduces weak interfaces. However, there are several efforts underway to improve the mechanical properties of FDM parts and this is an exciting space to follow with many approaches to this being taken. Some of these involve explicitly improving the interfacial strength: one of the ways this can be achieved is by pre-heating the base layer (as being investigated by Prof. Keng Hsu at the Arizona State University using lasers and presented at the RAPID 2016 conference). Another approach is being developed by a company called Essentium who combine microwave heating and CNT coated filaments as shown in the video below.

Taking a very different approach, Arevo labs has developed a 6-axis robotic FDM process that allows for conformal deposition of carbon fiber composites and uses an FEA solver to generate optimized toolpaths for improved properties.

https://youtu.be/67x9dhrJlgw?t=2s

3. Faster & Bigger

A lot of press has centered around FDM printers that make bigger parts and at higher deposition rates: one article discusses 4 of these companies that showcased their technologies at an Amsterdam trade show. Among the companies that showcased their technologies at RAPID was 3D Platform, that showed a $27,000 3D printer for FDM with a 1m x 1m x 0.5m printing platform. Some of the key questions for large form factor printers is if and how they deal with geometries needing supports and enabling higher temperature materials. Also, while FDM is well suited among the additive technologies for high throughput, large size prints, it does have competition in this space: Massivit is one company that in the video below shows the printing of a structure 5.6 feet tall in a mere 5 hours using what they call “Gel Dispensed Printing” that reduces the need for supports.

 4. Bioprinting Applications

Micro-extrusion through syringes or specialized nozzles is one of the key ways bioprinting systems operate – but this is technically not “fused” deposition in that it may not involve thermal modification of the material during deposition. However, FDM technology is being used for making scaffolds for bio-printing with synthetic, biodegradable or bio-compatible polymers such as PCL and PLGA. The idea is these scaffolds then form the structure for seeding cells (or in some cases the cells are bioprinted as well onto the scaffold). This technology is growing fast and something we are also investigating at PADT – watch this space for more updates.

5. Material Modeling Improvements

Modeling FDM is an important part of being able to use simulation/analysis to design better processes and parts for functional use. This may not get a lot of press compared to the items above, but is a particular interest of mine and I believe is a critical piece of the puzzle going to true part production with FDM. I have written a few blog posts on the challenges, approaches and a micromechanics view of FDM printed structures and materials. The idea behind all of these is to represent FDM structures mathematically with valid and accurate models so that their behavior can be predicted and designs truly optimized. This space is also growing fast, the most recent paper I have come across in this space is from the University of Wisconsin-Madison that was published May 12, 2016.

Conclusion

Judging by media hype, metal 3D printing and 3D bioprinting are currently dominating the media spotlight – and for good reasons. But FDM has many things going for it: low cost of entry and manufacturing, user-friendliness and high market penetration. And the technology growth has no sign of abating: the most recent, 2016 Wohlers report assesses that there are over 300 manufacturers of FDM printers, though rumor on the street has it that there are over a thousand manufacturers coming up – in China alone. And as the 5 trends above show, FDM has a lot more to offer the world beyond being just the most rapidly scaling technology – and there are people working worldwide on these opportunities. When a process is as simple and elegant as extruding material from a hot nozzle, usable innovations will naturally follow.

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT Pulse Newsletter Screen Grab from March 2023

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

05/31/2023

Driving Automotive Innovation with Additive - Webinar

05/24/2023

Hill Air Force Base Tech Expo

05/24/2023

Structural Updates in Ansys 2023 R1 (3) – Structural Optimization & Ex

05/23/2023

CROSSTALK 2023: Emerging Opportunities for Advanced Manufacturing Smal

05/10/2023

Signal & Power Integrity Updates in Ansys 2023 R1 - Webinar

04/26/2023

Additive Manufacturing Updates in Ansys 2023 R1 - Webinar

04/20/2023

38th Space Symposium Arizona Space Industry

More Info

04/19/2023

38th Space Symposium
Arizona Space Industry

04/19/2023

Additive Aids for Manufacturing - Webinar

04/18/2023

38th Space Symposium
Arizona Space Industry

04/17/2023

38th Space Symposium

04/13/2023

Venture Madness 2023

04/12/2023

Fluid Meshing & GPU-Solver Updates in Ansys 2023 R1 - Webinar

03/29/2023

8th Thermal and Fluids Engineering Conference

03/29/2023

Structural Updates in Ansys 2023 R1 - Composites, Fracture & MAPDL

03/28/2023

8th Thermal and Fluids Engineering Conference

03/27/2023

8th Thermal and Fluids Engineering Conference

03/26/2023

8TH Thermal and Fluids Engineering Conference

03/24/2023

Arizona BioPreneur Conference | Spring 2023

03/22/2023

2023 Arizona MedTech Conference

03/22/2023

Optimize Jigs & Fixtures with Additive - Webinar

03/15/2023

3D Design Updates in Ansys 2023 R1 - Webinar

03/08/2023

Competitive Advantages of 1D/3D Coupled Simulation - Webinar

03/01/2023

High Frequency Updates in Ansys 2023 R1 - Webinar

02/22/2023

Additive Advantages in Aerospace - Webinar

02/15/2023

Structural Updates in Ansys 2023 R1 (1) - Webinar

02/09/2023

IME 2023: MD&M | WestPack | ATX | D&M | Plastek

02/08/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

02/07/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

01/27/2023

Arizona Photonics Days, 2023

01/26/2023

Arizona Photonics Days, 2023

01/26/2023

TIPE 3D Printing | 2023

01/26/2023

Venture Cafe Phoenix Talent Night - Job Fari

01/26/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/25/2023

Arizona Photonics Days, 2023

01/25/2023

Building A.M.- Utah: Kickoff!

01/25/2023

TIPE 3D Printing | 2023

01/25/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

TIPE 3D Printing | 2023

01/18/2023

2023 AZ Tech Council Golf Tournament

12/21/2022

Simulation Best Practices for 5G Technology - Webinar

12/14/2022

Digital Twins Updates in Ansys 2022 R2 - Webinar

12/08/2022

Tech the Halls - AZ Tech Council Holiday Mixer

12/07/2022

Electric Vehicle and Other Infrastructure Update Panel

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

10/17/2022

Experience Stratasys Truck Tour - Clearfield Utah

10/14/2022

ASU School of Manufacturing Systems and Networks - Formal Opening Cele

10/14/2022

Experience Stratasys Truck Tour - Midvale Utah

10/12/2022

Experience Stratasys Truck Tour - Littleton Colorado

10/06/2022

Fluids Updates in Ansys 2022 R2 - Webinar

10/05/2022

Experience Stratasys Truck Tour - Colorado Springs

09/29/2022

White Hat Life Science Investor Conference - 2022

09/28/2022

2022 AZBio Awards

09/28/2022

Simulation Best Practices for Rotating Machinery Design & Development

09/21/2022

ExperienceIT NM 2022

09/21/2022

Additive Updates in Ansys 2022 R2 - Webinar

09/14/2022

Rocky Mountain Life Sciences Investor & Partnering Conference

09/08/2022

Ansys Optics Simulation User Group Meeting - Virtual

09/08/2022

Ansys Optics Simulation User Group Meeting

09/07/2022

SI & PI Updates in Ansys 2022 R2 - Webinar

08/31/2022

Simulation Best Practices for Developing Medical Devices - Webinar

08/24/2022

Mechanical Updates in Ansys 2022 R2 - Webinar

08/10/2022

Tucson after5 Tech Mixer: Ruda-Cardinal

08/05/2022

Flagstaff Tech Tour, 2022

08/02/2022

2022 CEO Leadership Retreat

08/01/2022

2022 CEO Leadership Retreat

07/27/2022

Thermal Integrity Updates in Ansys 2022 R1 - Webinar

07/20/2022

Simulation Best Practices for the Pharmaceutical Industry - Webinar

07/14/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

Additive & Structural Optimization Updates in Ansys 2022 R1 - Webinar

07/07/2022

Arizona AADM Conference, 2022

06/29/2022

LS-DYNA Updates & Advancements in Ansys 2022 R1 - Webinar

06/23/2022

Simulation Best Practices for Wind Turbine Design - Webinar

06/15/2022

MAPDL Updates & Advancements in Ansys 2022 R1 - Webinar

06/01/2022

Mechanical Updates in Ansys 2022 R1 - pt. 2 Webinar

05/26/2022

Modelling liquid cryogenic rocket engines in Flownex - Webinar

05/25/2022

SMR & Advanced Reactor 2022

05/25/2022

05/24/2022

SMR & Advanced Reactor 2022

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: