SFF Symposium 2016 Paper: Predicting the Mechanical Behavior of ULTEM-9085 Honeycomb Structures

Categories:

Our work on  3D printed honeycomb modeling that started as a Capstone project with students from ASU in September 2015 (described in a previous blog post), was published in a peer-reviewed paper released last week in the proceedings of the SFF Symposium 2016. The full title of the paper is “A Validated Methodology for Predicting the Mechanical Behavior of ULTEM-9085 Honeycomb Structures Manufactured by Fused Deposition Modeling“. This was the precursor work that led to a us winning an 18-month award to pursue this work further with America Makes.

Download the whole paper at the link below:
http://sffsymposium.engr.utexas.edu/sites/default/files/2016/168-Bhate.pdf

Abstract
ULTEM-9085 has established itself as the Additive Manufacturing (AM) polymer of choice for end-use applications such as ducts, housings, brackets and shrouds. The design freedom enabled by AM processes has allowed us to build structures with complex internal lattice structures to enhance part performance. While solutions exist for designing and manufacturing cellular structures, there are no reliable ways to predict their behavior that account for both the geometric and process complexity of these structures. In this work, we first show how the use of published values of elastic modulus for ULTEM-9085 honeycomb structures in FE simulation results in 40- 60% error in the predicted elastic response. We then develop a methodology that combines experimental, analytical and numerical techniques to predict elastic response within a 5% error. We believe our methodology is extendable to other processes, materials and geometries and discuss future work in this regard.

Figure
Fig 1. Honeycomb tensile test behavior varying as a function of manufacturing parameters
The ASU Capstone team (left to right): Drew Gibson, Jacob Gerbasi, John Reeher, Matthew Finfrock, Deep Patel and Joseph Van Soest.
Fig 2. The ASU Capstone team (left to right): Drew Gibson, Jacob Gerbasi, John Reeher, Matthew Finfrock, Deep Patel and Joseph Van Soest.

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter. Every month we share news about PADT, our partners, and our customers. We also share links to useful information on simulation, product development, and 3D Printing.  Sign up, and let's stay in touch.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

07/25/2024

AZTC Q3 VIP Tech Mixer

08/05/2024

2024 CEO Leadership Retreat

08/23/2024

12 pm - 4 pm. PADT's Tempe Office

09/09/2024

Turbine Engine Technology Symposium 2024

09/10/2024

New Mexico Tech Summit 2024

09/12/2024

Rocky Mountain Life Sciences Investor & Partnering Conference

09/13/2024

Rocky Mountain Life Sciences Investor & Partnering Conference

09/18/2024

AZBio Awards

10/16/2024

2024 Southern Arizona Tech + Business Expo

10/23/2024

PADT30 | Nerdtoberfest 2024

11/13/2024

2024 Governor's Celebration of Innovation

Search the PADT Site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: