Metal 3D Printed Shift Knob: Is It Cool(er)?

I had a really great time designing the Metal 3D printed shift knob from my previous blog post. I was curious what the other benefits of the knob may be besides being cool to look at and show off. What better way than to use the simulation software that we use here at PADT every day!

Solid versus STi

One of the clear differences between my solid spherical knob and the Metal 3D printed version is surface area. Being that PADT is based in Tempe, AZ, some may say that we have “warm” summers down here. Couple the 120F days with a black car, and the interior can get very hot, at some points feeling like the sun itself has taken up residence inside the back seat. With modern A/C, this heat can be mitigated fairly quickly, only to attempt to shift into gear to be scalded by the shift knob!

I wanted to see what the rate of cooling for the two knobs would be in a basic situation with some basic assumptions. Using ANSYS transient thermal, I initialized the knobs to 150F, temperatures that can be quickly reached in parked cars here in AZ. I added a convection heat transfer boundary condition on the outer surface of each shift knob, assuming a film coefficient of 50 W/m^2C, and that the ambient temp in the car is at a cool 70F.

I ran the simulations for 5 minutes, and the results were in line with what I expected. As the 3D printed knob has more surface area for cooling, it’s final temperature was ~84F, compared to the solid spherical knob at a final temperature of 115F!

Solid versus STi color 1

Want to learn more, check out the article in “Additive Manufacturing Media.”

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

06/12/2024

Connect Updates in Ansys 2024 R1 - Webinar

06/26/2024

Structures Updates in Ansys 2024 R1 (3) - Webinar

06/27/2024

E-Mobility and Clean Energy Summit

07/10/2024

Fluids Updates in Ansys 2024 R1 - Webinar

07/18/2024

Stratafest - Denver, CO

08/05/2024

2024 CEO Leadership Retreat

09/10/2024

New Mexico Tech Summit 2024

10/23/2024

PADT30 | Nerdtoberfest 2024

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: