Installing a Metal 3D Printer: Part 1 (Equipment)


After installing our first Laser Powder Bed Fusion Additive Manufacturing system, we learned a lot, and while he was at PADT, Dhruv Bhate kindly wrote up a series of blog posts on what we learned.

Here are the articles:


concept-laser-mlab
Fig 1. Concept Laser MLab Cusing R in PADT’s Metal 3D Printing Lab

What equipment does one need for metal 3D printing? 

This is the first in a five-part series that brings together the different lessons we learned installing our first metal printer, a Concept Laser MLab Cusing R at PADT, shown in Figure 1. In this post I list the different equipment needed to enable metal 3D printing end-to-end, along with a brief explanation of its purpose. In subsequent posts, I deal with (2) Facilities, (3) Safety, (4) Environmental & (5) Housekeeping aspects of the technology. I hope this information adds to the conversation in a meaningful way and help those who are thinking about, or in the process of installing a metal 3D printer.

The specifics of some of this information will vary depending on the equipment and materials you handle, but my hope is the themes covered here give you a sense of what is involved in installing a metal 3D printer to aid in your preparation for doing the same and for having good discussions with your equipment supplier to ensure these are addressed at a minimum.

One way to look at classifying the equipment needed (beyond the obvious metal 3D printer!) is by its purpose, and I do so here by dividing it into two broad categories: Ancillary Equipment (necessary to the printing itself) and Post-Processing Equipment (focused on the part).

At the outset, it is crucial that the difference between reactive and non-reactive metal alloys be comprehended since a lot of the use of the equipment differs depending on what kind of metal alloy is being used. A previous blog post addressed these differences and these terms will be used in the following sections.

1. Ancillary Equipment

1.1 Wet Separator

wet-separator-ruwac
Fig 2. Wet separator used to vacuum fugitive powder

The wet separator is essentially a vacuum cleaner that is designed to safely vacuum stray (“fugitive”) metal powders that cannot be cleaned up any other way. When dealing with powders, the typical recommendation is to first brush whatever you can into the overflow bin so you can reuse it. The next step is to try and wipe up powder with a moist lint-free cloth (to be covered in the housekeeping post). The wet separator has a water column that passivates the metal powder and renders it non-reactive to allow for easier disposal (to be covered in the environmental post). Wet separators require a significant amount of maintenance, particularly when dealing with reactive metals like Titanium and Aluminum alloys, where the supplier recommends the wet separator be cleaned out on a daily basis. At least one company has developed a kit to help with wet separator cleaning – which gives you an indication of how significant of an issue this is. Most suppliers provide a wet separator along with their equipment.

1.2 Glove Box

glove-box
Fig 3. Glove box used to interact with the build chamber in a safe manner, and in an inert atmosphere for reactive metals

A glove box is a useful piece of equipment for dealing with reactive metals in particular. The glove box allows an operator to manage all the powder handling in the build chamber to be done in a closed environment. For non-reactive metals this is not a necessary piece of equipment but it is highly recommended for reactive metals. The glove box when used in concert with reactive metals will allow for inert gas flushing out of oxygen to low PPM levels prior to operator intervention, and also includes grounding connections for the box to the machine. The nice thing about having a glove box is it reduces the amount of time you need to have a respirator on by allowing you to add powder and unpack builds in a closed environment. The glove box may also be integrated into the machine itself – ours is a stand alone device on wheels that we roll over to the machine when we need it.

1.3 Powder Sieve

Unless you plan on disposing all the powder in each build after it is completed, you need a sieve to separate out the larger particles and contaminants from the powder you wish to reuse in subsequent builds. The sieves are also typically provided with the machine and can be enabled with inerting capability (as shown in Fig 4 on the left, or as shown on the right, come as a small desktop unit that can sieve about 3-5 lbs of powder at a time). While the sieve on the left may be used for reactive metal sieving, it is uncertain if one can safely use the desktop sieve for the same, even with grounding the table it sits on and the operator – this is a gray area and I am keen to hear thoughts on this from those that have the expertise/experience in this space.

sieves
Fig 4. Mechanical sieving: (left) for large quantity sieving, (right) tabletop model for smaller quantities

1.4 Ultrasonic Cleaner

ultrasonic-cleaner
Fig 5. Ultrasonic cleaner used to help isolate metal powder trapped inside parts and supports

The purpose of the ultrasonic cleaner is to remove as much trapped powder as possible before the part and the build plate are subjected to any post-processing – this is to minimize the risk of trapped powder getting airborne during downstream processes – which cannot be completely eliminated (which is why PPE should be used all the way through till the final part is in hand after cleaning).

The Ultrasonic cleaner is used twice: first before the parts are removed from the build plate, and again after they are removed. Sometimes I will even use it a third time after all supports have been removed, if the part has internal p. I typically use the 40 kHz and 60 C temperature setting but have not sought to further optimize the parameters at this time.

2. Post-Processing Equipment

2.1 Furnace

furnace 1 scaled
Fig 6. Radiation heating furnace with inert gas capability. The Nabertherm 7/H has a maximum temperature of 1280 C, suitable for stress relief.

The purpose of the furnace is to relieve residual stresses built in the parts prior to removing them from the build plate. So this is the first step after the parts and the plate come out of the ultrasonic cleaner. We use a furnace that allows for nitrogen or argon flushing, and place our parts wrapped in stainless steel foil in a gas box. Instructions for heat treatment (time and temperature profile) are typically provided on the technical specifications that come with the material. Metals like stainless steel can be stress relieved in a nitrogen atmosphere but Inconels and Ti6Al4V for example require higher temperatures of between 800-1000 C and argon atmospheres – so you need to be setup for both gases if you are considering running more than 1 metal in your operation.

2.2 Support Removal

All parts are connected to the build plate by between 3-5mm of supports that need to be removed. This is a two step process: the first step involves removing the parts with supports off the build plate, and this is most commonly done with a table saw or a wire EDM. At PADT, we stumbled upon a third way to do this, using an oscillating hand tool and a carbide blade – which works well for small parts (<3″ in X-Y space). It is important to always wear gloves and a supplier recommended (N95 or higher) respirator while removing supports since there could be trapped powder in the supports that was not removed with the Ultrasonic cleaner. The second step is to use hand tools to pry out the supports from the part – this is why it is important to design supports that have weak mechanical connections to the part itself – ideally you can tear them off with hand tools like a perforated sheet of paper [Video below courtesy Bob Baker at PADT, Inc].

2.3 Die Grinder

Die grinder scaled
Fig 7. Die grinder used for removing burrs at the support interfaces on the part

A carbide die grinder is then used to grind away the support-model interface – for tiny parts, this can be achieved with a hand file as well for some parts but is easier to do with a die grinder. For large parts, this need can be eliminated by designing in regions that are to be machined later and aligning these regions with supported regions, so as to reduce the need for finishing on these surfaces.

2.4 Face Milling

This may come as a bit of a surprise, but you also need some way of replenishing the build plates after use so you can re-use the plates – this involves using a face milling technique to remove all the remnant supports on the build plate and take off a thin slice at the top of the build plate, while retaining flatness to within 100 microns (0.004″). Having this capability in-house will greatly speed-up your ability to start successive prints and reduce the need to keep large inventories of build plates [Video below courtesy Bob Baker at PADT, Inc].

2.5 Surface Finishing

A combination of techniques can be used for surface finishing. At a minimum, you must have the ability to do glass bead blasting – this is both for the printed parts, but also for the build plate itself – a bead blasted finish is recommended to improve the adhesion of the first layer of powder to the build plate.

beadblasterplates
Fig 8. (left) Bead blaster and (right) post-processed build plates, ready for use again

2.6 Other Capabilities

The list above is what I would consider a minimum list of capabilities one needs to get started in metal 3D printing, but is not comprehensive and does not include facility, safety, environmental and housekeeping requirements which I will cover in future posts. Additional CNC equipment for machining metal AM parts, heat treatment and HIP, and superior surface finishing and cleaning techniques are often called upon for metal AM production, but these are highly dependent on application and part design, which is why I have left them out of the above list.

Move on to part 2 of this series where I discuss the facilities requirements for metal 3D printing (electrical, inert gas etc.). Did I miss anything or do you have a better way of doing the things described above? Please send your thoughts to info@padtinc.com, citing this blog post, or connect with me on LinkedIn.

Acknowledgements:
Garrett Garner at Concept Laser, Inc and Bob Baker at PADT, Inc. for their insight and expertise that helped us select and bring in the above capabilities at PADT.


Continue Reading:

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT Pulse Newsletter Screen Grab from March 2023

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

05/31/2023

Driving Automotive Innovation with Additive - Webinar

05/24/2023

Hill Air Force Base Tech Expo

05/24/2023

Structural Updates in Ansys 2023 R1 (3) – Structural Optimization & Ex

05/23/2023

CROSSTALK 2023: Emerging Opportunities for Advanced Manufacturing Smal

05/10/2023

Signal & Power Integrity Updates in Ansys 2023 R1 - Webinar

04/26/2023

Additive Manufacturing Updates in Ansys 2023 R1 - Webinar

04/20/2023

38th Space Symposium Arizona Space Industry

More Info

04/19/2023

38th Space Symposium
Arizona Space Industry

04/19/2023

Additive Aids for Manufacturing - Webinar

04/18/2023

38th Space Symposium
Arizona Space Industry

04/17/2023

38th Space Symposium

04/13/2023

Venture Madness 2023

04/12/2023

Fluid Meshing & GPU-Solver Updates in Ansys 2023 R1 - Webinar

03/29/2023

8th Thermal and Fluids Engineering Conference

03/29/2023

Structural Updates in Ansys 2023 R1 - Composites, Fracture & MAPDL

03/28/2023

8th Thermal and Fluids Engineering Conference

03/27/2023

8th Thermal and Fluids Engineering Conference

03/26/2023

8TH Thermal and Fluids Engineering Conference

03/24/2023

Arizona BioPreneur Conference | Spring 2023

03/22/2023

2023 Arizona MedTech Conference

03/22/2023

Optimize Jigs & Fixtures with Additive - Webinar

03/15/2023

3D Design Updates in Ansys 2023 R1 - Webinar

03/08/2023

Competitive Advantages of 1D/3D Coupled Simulation - Webinar

03/01/2023

High Frequency Updates in Ansys 2023 R1 - Webinar

02/22/2023

Additive Advantages in Aerospace - Webinar

02/15/2023

Structural Updates in Ansys 2023 R1 (1) - Webinar

02/09/2023

IME 2023: MD&M | WestPack | ATX | D&M | Plastek

02/08/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

02/07/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

01/27/2023

Arizona Photonics Days, 2023

01/26/2023

Arizona Photonics Days, 2023

01/26/2023

TIPE 3D Printing | 2023

01/26/2023

Venture Cafe Phoenix Talent Night - Job Fari

01/26/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/25/2023

Arizona Photonics Days, 2023

01/25/2023

Building A.M.- Utah: Kickoff!

01/25/2023

TIPE 3D Printing | 2023

01/25/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

TIPE 3D Printing | 2023

01/18/2023

2023 AZ Tech Council Golf Tournament

12/21/2022

Simulation Best Practices for 5G Technology - Webinar

12/14/2022

Digital Twins Updates in Ansys 2022 R2 - Webinar

12/08/2022

Tech the Halls - AZ Tech Council Holiday Mixer

12/07/2022

Electric Vehicle and Other Infrastructure Update Panel

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

10/17/2022

Experience Stratasys Truck Tour - Clearfield Utah

10/14/2022

ASU School of Manufacturing Systems and Networks - Formal Opening Cele

10/14/2022

Experience Stratasys Truck Tour - Midvale Utah

10/12/2022

Experience Stratasys Truck Tour - Littleton Colorado

10/06/2022

Fluids Updates in Ansys 2022 R2 - Webinar

10/05/2022

Experience Stratasys Truck Tour - Colorado Springs

09/29/2022

White Hat Life Science Investor Conference - 2022

09/28/2022

2022 AZBio Awards

09/28/2022

Simulation Best Practices for Rotating Machinery Design & Development

09/21/2022

ExperienceIT NM 2022

09/21/2022

Additive Updates in Ansys 2022 R2 - Webinar

09/14/2022

Rocky Mountain Life Sciences Investor & Partnering Conference

09/08/2022

Ansys Optics Simulation User Group Meeting - Virtual

09/08/2022

Ansys Optics Simulation User Group Meeting

09/07/2022

SI & PI Updates in Ansys 2022 R2 - Webinar

08/31/2022

Simulation Best Practices for Developing Medical Devices - Webinar

08/24/2022

Mechanical Updates in Ansys 2022 R2 - Webinar

08/10/2022

Tucson after5 Tech Mixer: Ruda-Cardinal

08/05/2022

Flagstaff Tech Tour, 2022

08/02/2022

2022 CEO Leadership Retreat

08/01/2022

2022 CEO Leadership Retreat

07/27/2022

Thermal Integrity Updates in Ansys 2022 R1 - Webinar

07/20/2022

Simulation Best Practices for the Pharmaceutical Industry - Webinar

07/14/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

Additive & Structural Optimization Updates in Ansys 2022 R1 - Webinar

07/07/2022

Arizona AADM Conference, 2022

06/29/2022

LS-DYNA Updates & Advancements in Ansys 2022 R1 - Webinar

06/23/2022

Simulation Best Practices for Wind Turbine Design - Webinar

06/15/2022

MAPDL Updates & Advancements in Ansys 2022 R1 - Webinar

06/01/2022

Mechanical Updates in Ansys 2022 R1 - pt. 2 Webinar

05/26/2022

Modelling liquid cryogenic rocket engines in Flownex - Webinar

05/25/2022

SMR & Advanced Reactor 2022

05/25/2022

05/24/2022

SMR & Advanced Reactor 2022

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: