Spectre Side-Channel and Meltdown – How will living in this new reality affect the world of numerical simulation?

By: David Mastel
– January 17, 2018
Categories:

Literally, while I was sorting and running benchmarks and prepping the new benchmarks data originally titled. ANSYS Release 18.2 Ball Grid Array Benchmark information using two sixteen core INTEL® XEON® Gold 6130 CPU’s. I noticed that my news feeds had started to blow up with late breaking HPC news. The news as you may have guessed is the Spectre and Meltdown flaws that were recently published.

I thought to myself “Well this is just great the benchmarks that I just ran are no longer relevant.  My next thought was to wait now I can show a real world example. I have waited this long to run the ANSYS numerical simulation benchmarks on this new CPU architecture. I can wait a little longer to post my findings.” What now? Oh my more Late Breaking News! Research findings, Execution orders no barriers! Side channels used to get access to private address areas of the hardware! Wow this is a bad day. As I sat reading more news, then I drifted off daydreaming, then back to  my screen then the clock on the wall, great it is 2am already!, just go home…” Then thoughts immediate shifted and I was back thinking about indeed, how these hardware flaws impact the missing middle market? HPC numerical simulation!!! I dug in deep and pressed forward content with starting over on the benchmarks knowing after the patches released around Jan 9th will be a whole new world.

I decided to spare the ugly details related to the Spectre array bounds/brand prediction attack flaws. The out of order meltdown vulnerabilities! UGH! I seriously believe that someone has AI writing news articles written five or six different ways with each somehow saying the same thing. I also provide the links to the information and legal statements directly from a who’s who list of accountable parties:

Executive Summary:

  • * Remember every case is different so please do your run your own tests to verify how this new reality affects your hardware and software environment.*
    • Due to costs this machine has a single NVMe M.2 for the primary drive with a single 2TB SATA drive for its Mid-Term Storage area.
  • What was the impact for my benchmark?
    • Positive takeaway:
      • In all of the years of running the sp5 benchmark. I recorded the fastest benchmark time using this CUBE w32s, dual INTEL® XEON® Gold 6130 CPU workstation.
      • Using all thirty two cores 125.7 seconds for Solution Time (Time Spent Computing Solution).
        • Next, Coming in at 135.7 seconds the Solution Time metric after running the OS patches is my second fastest data point for the ANSYS sp5 benchmark.
          • ANSYS sp5 benchmark data – PADT, Inc. Currently from 2005 until this time.
      • The Solution Times continued to solve faster with each bump in cores.
      • Performance per dollar was maximized in this configuration.
    • Depending on number of cores used that I used for the ANSYS sp5 benchmark. I give the actual data below showing the percentage differences before and after:
      • Largest percentage difference:
        • Solution Time: -9.81% using four CPU cores.
        • Total Time: -7.87% using two CPU cores.
  • The need to turn the security screws down within your corporate enterprise network is now.
  • A rogue malicious agent needs to be on the inside of your corporate network to execute any sort of crafted attack. Much of these details are outlined in the Project Zero abstract.
  • Pay extra attention to just who you let on your internal network.
    • I reiterate the recommendations of many security professionals that you should already be restricting your internal company network and workstations to employee use. If you are not sure ask again.
  1. Spectre flaw:
    1. INTEL, ARM & AMD CPU’s are affected by the Spectre array bounds hardware attacks.
  2. Meltdown flaw:
    1. INTEL CPU’s and some ARM high performance CPU’s are affected by the “easier to exploit” Meltdown vulnerability.

I am also interested to see how continued insertion of code barriers and changed memory mappings affect my gaming performance. Haha! No, I am just kidding my numerical simulation performance benchmarks.

Clarifications & Definitions:

  • Unpatched Benchmark Data – No mitigation patches from Microsoft and NVidia addressing the Spectre and Meltdown flaws have been applied to the Windows 10 Professional OS running on the CUBE w32s that I use in this benchmark.
  • Patched Benchmark Data – I installed the batch of patches released by Microsoft as well as the NVDIA graphics card driver update released by NVIDIA addressing. NVIDIA indicates in their advisory that “their hardware their GPU hardware is not affected but they are updating their drivers to help mitigate the CPU security issue.” Huh? Installing now…
  • Solution Time – The amount of time in seconds that the CPU’s spent computing the solution. “The Time Spent Computing Solution”
  • Total Time – Total time in seconds that the entire process took. How the solve felt to the user also known as wall clock time.

The CUBE machine that I used in this ANSYS Test Case represent a fine balance based on price, performance and ANSYS HPC licenses used.

  • CUBE w32s, INTEL® XEON® Gold 6130 CPU, 128GB’s DDR4-2667MHz (1Rx4) ECC REG DIMM, Windows 10 Professional, ANSYS Release 18.2, INTEL MPI 5.0.1.3, 32 Total Cores, NVIDIA QUADRO P4000, Samsung EVO 960 Pro NVMe M.2, Toshiba 2TB 7200 RPM SATA 3 Drive.
  • Other notables, are you still paying attention?
    • My Supermicro X11Dai-N BIOS Settings:
      • BIOS Version: 2.0a
      • Execute Disable Bit: DISABLE
      • Hyper threading: ON
      • Intel Virtualization Technology: DISABLE
      • Core Enabled: 0
      • Power Technology: CUSTOM
      • Energy Performance Tuning: DISABLE
      • Energy performance BIAS setting: PERFORMANCE
      • P-State Coordination: HW_ALL
      • Package C-State Limit: C0/C1 State
      • CPU C3 Report: DISABLE
      • CPU C6 Report: DISABLE
      • Enhanced Halt State: DISABLE
    • With a read performance of up to 3,200MB/s and write performance of up to 1,900 MB/s using the Samsung NVMe M.2 drive was to tempting to pass up as my solve and temp solve area location. The bandwidth from the little feller was to impressive and continued to impress throughout the numerical simulation benchmarks.

My first overall impressions of this configuration is Wow! this workstation is fast, quiet and as you will see number crunches its way right on through to being my fastest documented workstation benchmark in this class. This extremely challenging and I/O intensive ANSYS benchmark is no match for this solver! Thumbs up and cheers to happy solving!

  • Cube w32s by PADT, Inc. ANSYS Release 18.2 FEA Benchmark
  • BGA (V18sp-5)
  • Transient nonlinear structural analysis of a electronic ball grid arrary
  • Analysis Type: Static Nonlinear Structural
  • Number of Degrees of Freedom: 6,000,000
  • Matrix: Symmetic

It Is All About The Data:

Benchmark data related to Pre and Post Spectre and Meltdown industry software patches on the CUBE w32s.

Table 1 – ANSYS sp5 Benchmark  – UnPatched Windows 10 Professional

ANSYS sp5 Benchmark  – Unpatched Windows 10 Professinal for Spectre and Meltdown hardware vulnerability – CUBE w32s
CPUsSolution TimeTotal Time
2631.3671
4366.8422
8216259
12193235
16144.3185
20143.9187
24131.9175
28137.4185
31142.4185
32125.7171
Apples to Apples, meltdown, spectre, ANSYS numerical simulation benchmark data
ANSYS Release 18.2 – SP5 Benchmark – Unpatched Windows 10 Professional CUBE w32s Solution and Total Time Values

Table 1.1 – ANSYS sp5 Benchmark  – Patched Windows 10 Professional

ANSYS sp5 Benchmark  – Patched Windows 10 Professional – CUBE w32s
CPUsSolution TimeTotal Time
2683726
4405.5446
8235.8277
12209.2251
16148.8191
20145.7189
24136.3182
28138.7186
31134.6179
32135.7179
Apples to Apples, meltdown, spectre, ANSYS numerical simulation benchmark data
ANSYS Release 18.2 – SP5 Benchmark – Patched Windows 10 Professional for the Sprectre and Meltdown hardware flaw – Solution And Total Time Values

Table 2 – ANSYS sp5 Benchmark  – The Before and After In Percentage Difference.

Percentage Difference – Not Patched vs. Patched for Sprectre, Meltdown
Solution TimeTotal Time
-7.94-7.87
-9.81-5.53
-8.34-6.72
-7.57-6.58
-2.73-3.19
-1.09-1.06
-2.87-3.92
-0.81-0.54
4.763.30
-6.74-4.57

Fig 2.a

Percentage of impact for this example. Negative value means in this example. The patched Windows 10 Professional CUBE w32s is taking a performance hit.
Percentage of impact for this example. Negative value means “performance hit” in this example. Notice a very interesting blip of positive percentage at 31 cores. A patched CUBE w32s Windows 10 Professional for Sprectre and Meltdown hardware vulnerability. The data from this Windows 10 Professional CUBE w32s INTEL® XEON® Gold 6130 CPU is showing an impact related to the patches.

FIg 2.b

Percentage of impact for this example. Negative value means in this example. The patched Windows 10 Professional CUBE w32s is taking a performance hit.
Percentage of impact for this example. Negative value means there is some sort of impact. The patched Windows 10 Professional CUBE w32s will feel longer to solve by looking at the clock on the wall.
CUBE w32s in action - January 2018
CUBE w32s in action – January 2018

Please contact your local ANSYS Software Sales Representative for more information on purchasing ANSYS HPC Packs. You too may be able to speed up your solve times by unlocking more compute power!

What the heck is a CUBE? For more information regarding our Numerical Simulation workstations and clusters please contact our CUBE Hardware Sales Representative at SALES@PADTINC.COM

Designed, tested and configured within your budget. We are happy to help and to listen to your specific needs.

CUBE w32s in action - January 2018
CUBE w32s in action – January 2018
Categories

Certified Elite Channel Partner

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Product Development
Diamond Partner

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: Phoenix Analysis and Design Technologies, 7755 S. Research Dr., Tempe, AZ, 85284, https://www.padtinc.com. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Share on twitter
Share on facebook
Share on linkedin
Share on pinterest

Upcoming Events

08/10/2022

Tucson after5 Tech Mixer: Ruda-Cardinal

08/05/2022

Flagstaff Tech Tour, 2022

08/02/2022

2022 CEO Leadership Retreat

08/01/2022

2022 CEO Leadership Retreat

07/27/2022

Thermal Integrity Updates in Ansys 2022 R1 - Webinar

07/20/2022

Simulation Best Practices for the Pharmaceutical Industry - Webinar

07/14/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

Additive & Structural Optimization Updates in Ansys 2022 R1 - Webinar

07/07/2022

Arizona AADM Conference, 2022

06/29/2022

LS-DYNA Updates & Advancements in Ansys 2022 R1 - Webinar

06/23/2022

Simulation Best Practices for Wind Turbine Design - Webinar

06/15/2022

MAPDL Updates & Advancements in Ansys 2022 R1 - Webinar

06/01/2022

Mechanical Updates in Ansys 2022 R1 - pt. 2 Webinar

05/26/2022

Modelling liquid cryogenic rocket engines in Flownex - Webinar

05/25/2022

SMR & Advanced Reactor 2022

05/25/2022

05/24/2022

SMR & Advanced Reactor 2022

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

05/04/2022

Mechanical Meshing Updates in Ansys 2022 R1 - Webinar

04/27/2022

04/22/2022

12TH ANNUAL TUCSON GOLF TOURNAMENT

04/21/2022

04/20/2022

Additional Fluids Updates in Ansys 2022 R1

04/20/2022

Experience Stratasys Tour – Tempe Arizona

04/18/2022

Experience Stratasys Tour - Flagstaff Arizona

04/14/2022

D&M West | MD&M West

04/13/2022

D&M West | MD&M West

04/13/2022

Experience Stratasys Tour - Albuquerque New Mexico

04/12/2022

D&M West | MD&M West

04/12/2022

Experience Stratasys Tour - Los Alamos New Mexico

04/12/2022

Optimizing Engineering Workflows f​​​​or Propulsion System Design

04/07/2022

Experience Stratasys Tour - Austin Texas

04/07/2022

37th Space Symposium - Arizona Space Industry

04/06/2022

Transforming Digital Engineering with Ansys Discovery 2022 R1

04/06/2022

37th Space Symposium - Arizona Space Industry

04/05/2022

37th Space Symposium - Arizona Space Industry

04/04/2022

37th Space Symposium - Arizona Space Industry

03/30/2022

Simulation Best Practices for Vehicle Engineering - Webinar

03/23/2022

03/23/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R1

02/24/2022

Arizona Technology Council After 5 Tech Mixer "Pandemic Pivot Pizza Pa

02/23/2022

SciTech Festival: Spend an Hour with 3D Printing Experts

02/11/2022

Webinar: Mechanical overview for Ansys 2022 R1

More Info

02/09/2022

Webinar: Product Development 101 (FAKE)

02/08/2022

Webinar: Navigating the Additive Landscape

01/27/2022

Arizona Technology Council 1st Quarter VIP Tech Mixer

More Info

01/26/2022

Simulation Best Practices for Gas Turbine Design & Development - Webin

More Info

01/19/2022

Arizona Photonics Days

More Info

11/04/2021

ExperienceIT, New Mexico

More Info

11/03/2021

Additive Manufacturing & Structural Optimization in Ansys 2021 R2 - We

More Info

11/03/2021

Optics Valley Technical Series: The Future of Simulation in the Optics

More Info

11/02/2021

SBIR Liftoff AZTC Virtual Breakfast Series

More Info

10/10/2021

Stratasys Mobile Truck Stop - Tucson Arizona

More Info

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: