PADT’s Salt Lake City office has been involved with fulfillment of medical 3d Printing of several cases where customers are exploring the value of multi-color and multi-material medical 3D models by using the Stratasys J750 or the Connex 3. One of those cases was presented at the Mayo Clinic’s Collaborative 3D Printing in Medical Practice 2018 course, which was held in Arizona this year.
An Intermountain Healthcare facility in Salt Lake City needed help with 3D printing a patient-specific anatomy, as they were looking to better their understanding of the value of 3D printing using multi-color printer beyond their existing in-house capabilities. In the picture below, Rami Shorti, PhD., a senior Biomechanical Engineering Scientist at Intermountain Healthcare, wrote:
“A patient with a horseshoe kidney and multiple large symptomatic stones, who had failed Extracorporeal Shock Wave Lithotripsy and Ureteroscopy Treatment, was used to evaluate the benefit of using different imaging modalities intraoperatively.”
Working with us in Salt Lake City, Rami Shorti, PhD, prepared the patient-specific medical imaging segmentation, post-processing of the patient anatomy, and finally generated for us a 3D printable CAD model that we were able to print using a Stratasys Objet 260 Connex 3. Since our office is located just around the corner from the hospital, we were able to work closely with Rami to identify the colors and finish of the final part.
The Connex 3 printer was introduced in 2014 as the only printer in the world that could combine three different model materials in a single print pass. Most 3D printers can only print with one material at a time, which is one of the main reasons why this technology is preferred for medical use cases along with its added precision. In 2017, Stratasys introduced the J750, which again is an industry first, becoming the only printer in the world that can print 6 different materials at the same time. Combinations of hard plastics and rubber materials allow for a range of shore hardness values along with the ability to mix three primary colors to print 500,000 different colors.
With a quick turnaround needed, we decided to use the Connex 3 and were amazed that we were able to print the parts in two batches. Within 48 hours of receiving the STL files from Dr. Shorti, we were able to 3D print, post-process, and deliver the parts in time for the surgeon to review the time-sensitive surgical planning guides using the mockup. To enhance the transparency of the parts, we simply applied a few coats of Rust-Oleum Clear Gloss to the 3D printed part. Now we were able to relax and wait for it to dry. Below is a picture of the finished products displayed at the Mayo Clinic event.
“3D printing added a level of benefit because of its ability to showcase the stones, renal pelvis, and renal arteries and veins simultaneously through the image fusion step done in Mimics software and with the use of specific materials and contrasting colors. In addition, its ability to be held and manipulated in space was observed to be beneficial especially for patient education.”
– Rami Shorti, PhD., senior Biomechanical Engineering Scientist, Intermountain Healthcare
PADT is excited to continue our work with Intermountain Healthcare, and grow this relationship as new opportunities arise to leverage multi-material printing.
You must be logged in to post a comment.