Gone Skiing: Aerodynamics – Does It Matter Which Way Your Skis Are Pointing On Your Roof Rack?

Categories: ,

I was on the gondola up at Keystone for night-skiing a week ago, after a long day at Beaver Creek, because the last thing I am going to do at 3:00 pm is try to make it back to Denver, as everyone knows it’s hardly more than a parking lot at that point. As it gets later, there’s nothing like a solo gondola ride, however, a solo ride would stop this story right about now.

On the Derler

On the gondola, I overheard a conversation where one gentleman was discussing how he was unable to open the hatch of his vehicle when his skis are in his roof rack. That’s fair, I know older WRX wagons with the spoiler would not be able to open with skis on the roof no matter what, so I figured that was the case. It turns out, that was NOT the case. The reason his hatch would not open was that he orients the skis with the tails forward because it is ‘more aerodynamic’ that way… I was skeptical, but held my tongue, knowing that I had the tools at my disposal to investigate!

I decided to make a model that would allow me to simulate various conditions to get to the bottom of this. My initial hypothesis is that the addition of the ski rack and crossbars is what has the largest effect on aerodynamics, and orientation of the skis probably has a negligible effect after that. As a side note, I am solely concerned with aerodynamics in this case, and am not worrying about the amount of the ski’s base material that is exposed for a given orientation. I am of the mindset that tree trunks and hidden rocks on the mountain are more of a danger to your bases than small rocks on the highway anyway. If you are waiting to comment, “Just get a roof box!”, I understand as I own both a box and a rack at this point, and they both have their advantages, and I will not be exploring the aerodynamics of a box…

…yet…

I was able to start by finding some faceted geometry of a Subaru Forester online (I’m from Colorado, can you tell?) and was able to import that into ANSYS Spaceclaim. Once in Spaceclaim, I was able to edit the faceted geometry to get nice exterior panel surfaces, which I then combined to get a single clean faceted exterior for the car.

Forester NoRack 1

Faceted Forester Geometry (Equipped with factory side rails)

After that, I used Spaceclaim to generate the remainder of the rack and skis, including crossbars, a ski rack, and a pair of skis (Complete with the most detailed bindings you have ever seen!). I made a combined part of the crossbars, rack, and skis for each one of my orientations, as this allows me to report the forces on each combined part during the simulation.

Forester RackOnePair 1

Added CAD geometry for the crossbars, ski rack, and a pair of skis

For the simulation, I used ANSYS Discovery Live, the newest tool from ANSYS that allows for instant and interactive design exploration. This tool lets me actively add my CAD geometry and shows results in realtime. I was able to start with just the car and then add and swap my ski/rack geometry with simple button clicks. With traditional simulation tools, I would have needed to create a mesh for each one of these cases, analyze them one at a time, and the post-process and compare results after the fact. After launching Discover Live, it’s as easy as selecting the type on analysis I want to run.

Discovery Start Page
The various types of solutions that can be done in ANSYS Discovery Live. For the purpose of this blog, I am using ‘Wind Tunnel’

Once I have selected ‘Wind Tunnel’ for my solution, I can select my geometry, and then am prompted for the direction of flow, as well as selecting the ‘floor’ of my domain. Once that is done, results show up on the screen instantly. I only needed to modify the flow velocity to ~65 mph. I am most interested in the force on the faces of the combined crossbars, rack, and skis in each orientation, so I created Calculations for each one, which is done by simply selecting the part and using the popup toolbar to create the graph.

DL popup
Popup toolbar allows for the quick creation of solution calculations

I was already off and running. I ran each one of the cases until the force plot had become steady.

Forester only
Car Only
Tips Forward
Skis Tips Forward Orientation
Tails Forward

Skis Tails Forward Orientation

Seeing that the force results for the Tips Forward vs. Tails Forward cases were very similar, I decided I should also run a ‘Bases Up’ Orientation, even though I STRONGLY advise against this, as UV wrecks the base material of your skis/snowboard.

Bases Up
Ski Bases Up and Tips Forward Orientation

In addition to the contour plot shown in the images above, you can also use emitters to show streamlines and particle flow, which also give some pretty neat visualizations.

Tips Forward streams
Streamlines shown on the Tips Forward orientation
Tips Forward emitter

Particle Emitter shown on the Tips Forward orientation

The graph plots show values for the Total Y Force for Tips Foward, Tails Forward, and Bases Up orientations to be 37.7 N, 39.1 N, and 37.1 N, respectively. Using Discovery Live, I was able to quickly run all 3 of these simulations, showing that there is not a major difference in the forces on the ski rack between the three orientations. So, put the skis on the roof in the direction that makes life easiest for you, and keep those bad boys paired to protect your bases from the sun, because splitting them isn’t going to help with aerodynamics anyway!

Next steps would be taking a specific case and running in 2D, then 3D, in ANSYS Fluent.

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

09/26/2023

Experience Stratasys Truck Tour - Houston

09/22/2023

AIAA Rocky Mountain Section Technical Symposium 2023

09/22/2023

Experience Stratasys Truck Tour - Dallas, TX

09/21/2023

Accelerating the Energy Transition through Simulation

09/20/2023

3D Printing vs. CNC Machining - Webinar

09/13/2023

Maxwell Updates in Ansys 2023 R2 - Webinar

09/12/2023

Sandia Science & Technology Park 25th Anniversary

09/12/2023

Experience Stratasys Truck Tour - Tempe, AZ

09/08/2023

26th Annual New Mexico Flying 40 Awards

09/08/2023

New Mexico Tech Summit

09/07/2023

New Mexico Tech Summit

08/30/2023

Structures Updates in Ansys 2023 R2 (1) - Mechanical, Post & Graphics

08/23/2023

Improved Injection Molding with Additive - Webinar

08/22/2023

SPIE Optics & Photonics Exhibition 2023

08/16/2023

Fluids Updates in Ansys 2023 R2 - Webinar

08/04/2023

Experience Stratasys Truck Tour - Salt Lake City, Utah

08/01/2023

Experience Stratasys Truck Tour - Denver Colorado

07/26/2023

Solving Supply Chain Issues with Additive - Webinar

07/25/2023

Arizona Tech Leadership Golf Tournament

07/24/2023

Arizona Tech CEO Leadership Retreat

07/19/2023

System Automation & Optimization Updates in Ansys 2023 R1 - Webinar

07/13/2023

2023 AEROSPACE, AVIATION, DEFENSE AND MANUFACTURING CONFERENCE

07/12/2023

Materials Updates in Ansys Granta 2023 R1 - Webinar

06/30/2023

Turbo Expo 2023

06/29/2023

Turbo Expo 2023

06/28/2023

Turbo Expo 2023

06/28/2023

Revolutionize Packaging Design with Additive - Webinar

06/27/2023

Turbo Expo 2023

06/27/2023

2023 E-MOBILITY AND CLEAN ENERGY SUMMIT

06/26/2023

Turbo Expo 2023

06/21/2023

Optics Updates in Ansys 2023 R1 - Webinar

06/07/2023

LS-DYNA Updates in Ansys 2023 R1 - Webinar

05/31/2023

Driving Automotive Innovation with Additive - Webinar

05/24/2023

Hill Air Force Base Tech Expo

05/24/2023

Structural Updates in Ansys 2023 R1 (3) – Structural Optimization & Ex

05/23/2023

CROSSTALK 2023: Emerging Opportunities for Advanced Manufacturing Smal

05/10/2023

Signal & Power Integrity Updates in Ansys 2023 R1 - Webinar

04/26/2023

Additive Manufacturing Updates in Ansys 2023 R1 - Webinar

04/20/2023

38th Space Symposium Arizona Space Industry

More Info

04/19/2023

38th Space Symposium
Arizona Space Industry

04/19/2023

Additive Aids for Manufacturing - Webinar

04/18/2023

38th Space Symposium
Arizona Space Industry

04/17/2023

38th Space Symposium

04/13/2023

Venture Madness 2023

04/12/2023

Fluid Meshing & GPU-Solver Updates in Ansys 2023 R1 - Webinar

03/29/2023

8th Thermal and Fluids Engineering Conference

03/29/2023

Structural Updates in Ansys 2023 R1 - Composites, Fracture & MAPDL

03/28/2023

8th Thermal and Fluids Engineering Conference

03/27/2023

8th Thermal and Fluids Engineering Conference

03/26/2023

8TH Thermal and Fluids Engineering Conference

03/24/2023

Arizona BioPreneur Conference | Spring 2023

03/22/2023

2023 Arizona MedTech Conference

03/22/2023

Optimize Jigs & Fixtures with Additive - Webinar

03/15/2023

3D Design Updates in Ansys 2023 R1 - Webinar

03/08/2023

Competitive Advantages of 1D/3D Coupled Simulation - Webinar

03/01/2023

High Frequency Updates in Ansys 2023 R1 - Webinar

02/22/2023

Additive Advantages in Aerospace - Webinar

02/15/2023

Structural Updates in Ansys 2023 R1 (1) - Webinar

02/09/2023

IME 2023: MD&M | WestPack | ATX | D&M | Plastek

02/08/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

02/07/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

01/27/2023

Arizona Photonics Days, 2023

01/26/2023

Arizona Photonics Days, 2023

01/26/2023

TIPE 3D Printing | 2023

01/26/2023

Venture Cafe Phoenix Talent Night - Job Fari

01/26/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/25/2023

Arizona Photonics Days, 2023

01/25/2023

Building A.M.- Utah: Kickoff!

01/25/2023

TIPE 3D Printing | 2023

01/25/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

TIPE 3D Printing | 2023

01/18/2023

2023 AZ Tech Council Golf Tournament

12/21/2022

Simulation Best Practices for 5G Technology - Webinar

12/14/2022

Digital Twins Updates in Ansys 2022 R2 - Webinar

12/08/2022

Tech the Halls - AZ Tech Council Holiday Mixer

12/07/2022

Electric Vehicle and Other Infrastructure Update Panel

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

10/17/2022

Experience Stratasys Truck Tour - Clearfield Utah

10/14/2022

ASU School of Manufacturing Systems and Networks - Formal Opening Cele

10/14/2022

Experience Stratasys Truck Tour - Midvale Utah

10/12/2022

Experience Stratasys Truck Tour - Littleton Colorado

10/06/2022

Fluids Updates in Ansys 2022 R2 - Webinar

10/05/2022

Experience Stratasys Truck Tour - Colorado Springs

09/29/2022

White Hat Life Science Investor Conference - 2022

09/28/2022

2022 AZBio Awards

09/28/2022

Simulation Best Practices for Rotating Machinery Design & Development

09/21/2022

ExperienceIT NM 2022

09/21/2022

Additive Updates in Ansys 2022 R2 - Webinar

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: