Press Release: NASA Awards PADT, Arizona State University and Kennesaw State University a $755,000 Phase II STTR Research Grant

Categories:

The Grant Will Fund Research for Combining Cellular Patterns Inspired by Nature with Simulation and 3D Printing to Make Stronger and Lighter Structures for Space Exploration

What do we like more here at PADT than combining simulation, design, and 3D Printing? Combining those three things for spaceflight applications.

That is what our 16th STTR/SBIR win is all about. Based upon our success with the shorter, first phase of this project, NASA has awarded PADT, ASU, and KSU the second phase of this R&D Project.

The team will work to take bio-inspired lattice shapes and develop tools to incorporate those shapes into the design of structure used in spacecraft. We will also create tools to optimize the distribution of the lattice structure, produce material properties, and verify the simulation results with rigorous testing.

Read more details in the press release below or here.

Also, watch this space for reports on what we learn and information about the tools we will be creating.

If you have the need to do simulation, design, or additive manufacturing, or combine any of those disciplines to create better products or improve your processes, please contact PADT and let’s talk about how we can help.


NASA Awards PADT, Arizona State University and Kennesaw State University a $755,000 Phase II STTR Research Grant

The Grant Will Fund Research for Combining Cellular Patterns Inspired by Nature with Simulation and 3D Printing to Make Stronger and Lighter Structures for Space Exploration

TEMPE, Ariz., December 10, 2019 ─ In a move that acknowledges its excellence and expertise in 3D printing, simulation, design and software development, PADT today announced NASA has awarded a $755,000 2019 Phase II Small Business Technology Transfer (STTR) research grant for it to collaborate with Arizona State University (ASU) and Kennesaw State University (KSU) to enable the development of stronger and lighter structures for space exploration. The objective of the joint effort is to develop a software tool for designing, virtually testing and optimizing strong, lightweight lattice structures for aerospace vehicles. The result of the research project will be a commercial software product that PADT plans to market.

Cells Stress 4up

The Phase II STTR grant is a continuation of the original $127,000 Phase I grant awarded to PADT and ASU’s Ira A. Fulton Schools of Engineering in August 2018. This is PADT’s 16th STTR/SBIR grant since the company was founded in 1994.

“We’re proud to win this Phase II STTR because it furthers our coordination with the Fulton Schools and requires the use of our three main areas of expertise: 3D printing, simulation and product development,” said Alex Grishin, Ph.D., consulting engineer, PADT. “As an Elite ANSYS channel partner, we also have the skillset needed to embed our solution in the ANSYS simulation tool, saving a lot of time and effort. Improving aerospace innovation is always an exciting prospect, and our team is uniquely qualified to apply our expertise to develop disruptive technology for NASA.”

Cell Missing Patterns

Shapes found in nature, like honeycombs in a beehive, are intriguing to the aerospace community because of their strength and light weight. Additionally, the shape and spacing of these lattice structures do not have to be uniform, and by varying them, the compositions can provide better performance. The challenge PADT, ASU and KSU is solving is how to develop a design tool that combines concepts from density, topology and parameter optimization to generate lattice materials that are aperiodic in nature and do not require a priori definition of cell size. Recent advancements in additive manufacturing will create the geometry specified by the tool and manufacture “bio-inspired” structures with detail to a degree previously not possible.

“ASU has become a leader in the advancement of additive manufacturing and we are continually discovering new ways to solve engineering challenges with this technology,” said Kyle Squires, Ph.D., dean, Fulton Schools of Engineering, Arizona State University. “The NASA Phase II STTR grant allows us to use simulation and 3D printing to explore bio-inspired structures to innovate how NASA designs and manufactures its spacecrafts.”

Honeycomb test

In addition to the software product, the group’s deliverables include cellular material data for inclusion in NASA’s open-source PeTaL platform, data analysis, experimental results, and 3D printed metal demonstration artifacts. The lattice structure design tool itself may allow NASA to design and manufacture high-performance materials, including:

  • Heat shields
  • Acoustic liners
  • Space debris resistant skins
  • Lightweight panels
  • Conformal, structural heat exchangers

“This research project is a great example of government, academic institutions and the private sector working together to provide practical solutions for the space industry,” said Ji Mi Choi, associate vice president, Entrepreneurship and Innovation, Arizona State University. “We appreciate the opportunity to work with NASA, PADT and KSU as we discover new ways to apply 3D printing and simulation to real-world challenges.”

To learn more about PADT and its advanced capabilities, please visit www.padtinc.com.

BriefingChartImage

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

About Ira A. Fulton Schools of Engineering

The Ira A. Fulton Schools of Engineering at Arizona State University, with more than 24,000 enrolled students, is one of the largest engineering schools in the United States, offering 44 graduate and 25 undergraduate degree programs across six schools of academic focus. With students, faculty and researchers representing all 50 states and 135 countries, the Fulton Schools of Engineering is creating an inclusive environment for engineering excellence by advancing research and innovation at scale, revolutionizing engineering education and expanding global outreach and partner engagement. The Fulton Schools of Engineering’s research expenditures totaled $115 million for the 2017-2018 academic year. Learn more about the Ira A. Fulton Schools of Engineering at engineering.asu.edu

# # #

Cell Missing Patterns 1
Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

11/15/2023

2023 Governor’s Celebration of Innovation Awards

11/15/2023

Twin Builder Updates in Ansys 2023 R2 - Webinar

11/01/2023

Webinar: Additive's Role in Factory 4.0

10/25/2023

Ansys LevelUp 2023

10/25/2023

Nerdtoberfest 2023

10/25/2023

Mechanical Updates in Ansys 2023 R2 (3) - Webinar

10/18/2023

2023 Southern Arizona Tech + Business Expo

10/18/2023

Fluent GPU Solver Updates in Ansys 2023 R2 - Webinar

10/09/2023

Structural Updates in Ansys 2023 R2 (2) - Webinar

10/02/2023

Colorado Life Sciences Innovation Forum 2023

09/27/2023

2023 AZ Bio Awards

09/26/2023

Experience Stratasys Truck Tour - Houston

09/22/2023

AIAA Rocky Mountain Section Technical Symposium 2023

09/22/2023

Experience Stratasys Truck Tour - Dallas, TX

09/21/2023

Accelerating the Energy Transition through Simulation

09/20/2023

3D Printing vs. CNC Machining - Webinar

09/13/2023

Maxwell Updates in Ansys 2023 R2 - Webinar

09/12/2023

Sandia Science & Technology Park 25th Anniversary

09/12/2023

Experience Stratasys Truck Tour - Tempe, AZ

09/08/2023

26th Annual New Mexico Flying 40 Awards

09/08/2023

New Mexico Tech Summit

09/07/2023

New Mexico Tech Summit

08/30/2023

Structures Updates in Ansys 2023 R2 (1) - Mechanical, Post & Graphics

08/23/2023

Improved Injection Molding with Additive - Webinar

08/22/2023

SPIE Optics & Photonics Exhibition 2023

08/16/2023

Fluids Updates in Ansys 2023 R2 - Webinar

08/04/2023

Experience Stratasys Truck Tour - Salt Lake City, Utah

08/01/2023

Experience Stratasys Truck Tour - Denver Colorado

07/26/2023

Solving Supply Chain Issues with Additive - Webinar

07/25/2023

Arizona Tech Leadership Golf Tournament

07/24/2023

Arizona Tech CEO Leadership Retreat

07/19/2023

System Automation & Optimization Updates in Ansys 2023 R1 - Webinar

07/13/2023

2023 AEROSPACE, AVIATION, DEFENSE AND MANUFACTURING CONFERENCE

07/12/2023

Materials Updates in Ansys Granta 2023 R1 - Webinar

06/30/2023

Turbo Expo 2023

06/29/2023

Turbo Expo 2023

06/28/2023

Turbo Expo 2023

06/28/2023

Revolutionize Packaging Design with Additive - Webinar

06/27/2023

Turbo Expo 2023

06/27/2023

2023 E-MOBILITY AND CLEAN ENERGY SUMMIT

06/26/2023

Turbo Expo 2023

06/21/2023

Optics Updates in Ansys 2023 R1 - Webinar

06/07/2023

LS-DYNA Updates in Ansys 2023 R1 - Webinar

05/31/2023

Driving Automotive Innovation with Additive - Webinar

05/24/2023

Hill Air Force Base Tech Expo

05/24/2023

Structural Updates in Ansys 2023 R1 (3) – Structural Optimization & Ex

05/23/2023

CROSSTALK 2023: Emerging Opportunities for Advanced Manufacturing Smal

05/10/2023

Signal & Power Integrity Updates in Ansys 2023 R1 - Webinar

04/26/2023

Additive Manufacturing Updates in Ansys 2023 R1 - Webinar

04/20/2023

38th Space Symposium Arizona Space Industry

More Info

04/19/2023

38th Space Symposium
Arizona Space Industry

04/19/2023

Additive Aids for Manufacturing - Webinar

04/18/2023

38th Space Symposium
Arizona Space Industry

04/17/2023

38th Space Symposium

04/13/2023

Venture Madness 2023

04/12/2023

Fluid Meshing & GPU-Solver Updates in Ansys 2023 R1 - Webinar

03/29/2023

8th Thermal and Fluids Engineering Conference

03/29/2023

Structural Updates in Ansys 2023 R1 - Composites, Fracture & MAPDL

03/28/2023

8th Thermal and Fluids Engineering Conference

03/27/2023

8th Thermal and Fluids Engineering Conference

03/26/2023

8TH Thermal and Fluids Engineering Conference

03/24/2023

Arizona BioPreneur Conference | Spring 2023

03/22/2023

2023 Arizona MedTech Conference

03/22/2023

Optimize Jigs & Fixtures with Additive - Webinar

03/15/2023

3D Design Updates in Ansys 2023 R1 - Webinar

03/08/2023

Competitive Advantages of 1D/3D Coupled Simulation - Webinar

03/01/2023

High Frequency Updates in Ansys 2023 R1 - Webinar

02/22/2023

Additive Advantages in Aerospace - Webinar

02/15/2023

Structural Updates in Ansys 2023 R1 (1) - Webinar

02/09/2023

IME 2023: MD&M | WestPack | ATX | D&M | Plastek

02/08/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

02/07/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

01/27/2023

Arizona Photonics Days, 2023

01/26/2023

Arizona Photonics Days, 2023

01/26/2023

TIPE 3D Printing | 2023

01/26/2023

Venture Cafe Phoenix Talent Night - Job Fari

01/26/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/25/2023

Arizona Photonics Days, 2023

01/25/2023

Building A.M.- Utah: Kickoff!

01/25/2023

TIPE 3D Printing | 2023

01/25/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

TIPE 3D Printing | 2023

01/18/2023

2023 AZ Tech Council Golf Tournament

12/21/2022

Simulation Best Practices for 5G Technology - Webinar

12/14/2022

Digital Twins Updates in Ansys 2022 R2 - Webinar

12/08/2022

Tech the Halls - AZ Tech Council Holiday Mixer

12/07/2022

Electric Vehicle and Other Infrastructure Update Panel

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: