Using Ansys Icepak Results in Ansys Mechanical

Categories:

With Icepak now falling under the umbrella of Electronics products in the Ansys Pro Premium Enterprise licensing scheme, it is easier than ever to obtain conjugate heat transfer simulation results without a dedicated Fluids license. Because of this, we have received multiple requests regarding methods to transfer Icepak’s results to a workbench environment for more accurate thermal and Mechanical results. So, without further ado, I will outline the procedure for four different methods along with their general use-cases.

1: Temperature from Classic Icepak

The first, and most straightforward, method is simply transferring body temperature directly from the Icepak (Classic) workbench application. This may be the preferred method for the majority of use-cases where getting thermal CHT results into a mechanical project is the goal. The Icepak node needs to be solved as normal, and then the solution can simply be dragged over to the setup node of another project, such as steady state thermal or static structural. Once this has been linked and updated, the transferred body temperatures are accessed through an “Imported Load” folder where the temperatures for individual bodies can be mapped over. The benefits are that as long as the Icepak simulation is set up as needed, you won’t need to resolve anything on the thermal side, and there is no extra manipulation of data required on the user’s end.

PADT Ansys Icepak Mechanical f01 1
PADT Ansys Icepak Mechanical f02

2: Heat Transfer Coefficients from Classic Ansys Icepak

The second method that sits natively within Workbench involves mapping heat transfer coefficients onto surfaces. This of course means that the thermal problem must be solved again, but it does provide extra accuracy over uniform HTC approximations, and some extra flexibility for recalculating body temperatures that result from changing power input conditions. This might be the desired approach if you are working with a forced flow and are looking at thermal stress results across a range of CPU loads, for example. HTC coordinate maps can be exported from Classic Icepak through the “Full Report” command with “Only summary information” disabled. 

PADT Ansys Icepak Mechanical f03

The complicating factor for this method is that the file format and information is not compatible with Workbench for External Data mapping in its default form.

I wrote a simple python script for this purpose – it reads in the HTC coordinate data, makes it all positive, rewrites it as a CSV, and adds the necessary reference (ambient) temperature column. It is important to note here that there can be an error in reported HTC sign from Icepak. This is because the sign is determined by the direction of heat transfer, which is reported without consideration to the solid body surface normal direction. So, for entirely convex shapes, the sign will be correct, but for more complicated structures like heatsinks with surfaces facing every which way, the signs will be inconsistent. Once this is done, each column needs to be correctly associated in the external data definition and then mapped to the setup of your thermal simulation. In Mechanical, this causes an Imported Load to show up under Analysis, which you will then insert a Convection Coefficient into. This can be scoped to individual faces, which should of course be included with those chosen when exporting from Icepak.

PADT Ansys Icepak Mechanical f04
PADT Ansys Icepak Mechanical f05
PADT Ansys Icepak Mechanical f06

For reference, the python script may look something like:

############################################
import numpy as np
import sys

##Usage is 'python HTCCleanup.py inputfilepath AmbientTemperature'
inputfile = sys.argv[1]
Temperature = float(sys.argv[2])

#Bring in Icepak data file as argument
data = np.loadtxt(inputfile,skiprows=25)

#Make all HTCs positive
data[:,4] = abs(data[:,4])

#Create and append a reference temperature column
temparray = np.ones([len(data[:,0]),1])*Temperature
data = np.append(data,temparray,axis=1)

#Write to file
np.savetxt('ProcessedReport.csv',data,delimiter=',',fmt='%.5e',header='Node#, x, y, z, HTC, TRef')
############################################

3: Temperatures from EDT Icepak

The electronics desktop version of Icepak is a newer and, in my opinion, a more user-friendly environment for Icepak simulations. However, since it does not integrate directly with Workbench, mapping over result data for further structural simulation is not as straightforward. Luckily for us, other users have already addressed this obstacle via an ACT extension!

This is the “Write Thermal Loads” extension that can be downloaded for free from the Ansys App Store (https://catalog.ansys.com).

image 97

Once loaded, the interface looks like this:

PADT Ansys Icepak Mechanical f07

Basically, this is a guided wizard that will export an external data file with coordinate defined temperatures according to the EDT bodies you select with the Wizard. The wizard also generates some workbench script files that can be used to automate the import process, but the most important part to know is that the temperature data file is brought in through External Data in essentially the same way as the aforementioned HTC file. For those who are familiar with the EDT environment and want to take thermal results straight into a structural analysis, this is the preferred approach.

4: HTCs from EDT Icepak

This is perhaps the most awkward (and advanced) workflow, but it provides the same flexibility as with Classic Icepak HTCs, without the potential error in HTC sign, and with the benefit of working in the EDT environment. The portion of this flow most likely to contain errors is generating the HTC data file, as we must make use of a normally inaccessible operation in the Field Calculator. After solving an Icepak project and generating results, we should first create a face list including all of the convection faces of interest – this is done by selecting those faces in the GUI and then using the Modeler > List > Create > Face List to generate this face. Once the list is created, open the field calculator (Icepak > Fields > Calculator), and then perform the following steps:

  1. Input > Quantity > Heat Transfer Coefficient
  2. Input > Geometry > Surface > Face List
  3. Scalar > Mean > Undo (ONE TIME)
  4. Output > Write

The single undo operation grants us access to the intermediate step where HTC data is accessible as a “SclSrf: SurfaveValue(Surface,HTC)” datatype, and can also be accessed by performing undo after any other scalar operation on a scalar field definition. (such as integration over a surface or body or a min/max calculation, for example)

The .fld file produced with the write operation is close to usable in workbench, but still must be slightly reformatted and appended with a reference temperature column. I would suggest a python script that is very similar to the one used for Classic HTCs.

One thing to note is that these files generated by EDT can end up being much larger than you may expect. This is because the field calculator essentially forms a list of all the surface elements on the surfaces you have specified, decomposes them into triangular elements if necessary, and then reports the HTC value of that triangular element at each connected corner node. So, you end up with 3 times as many data entries as you have surface elements, multiple HTCs reported for each node that touches more than one surface element, and a correspondingly large file for fine meshes on complicated geometries. Still, Workbench will interpret this whole thing fairly well, and you should end up with a good HTC map to make use of in Mechanical. 

PADT Ansys Icepak Mechanical f08

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT Pulse Newsletter Screen Grab from March 2023

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

05/31/2023

Driving Automotive Innovation with Additive - Webinar

05/24/2023

Hill Air Force Base Tech Expo

05/24/2023

Structural Updates in Ansys 2023 R1 (3) – Structural Optimization & Ex

05/23/2023

CROSSTALK 2023: Emerging Opportunities for Advanced Manufacturing Smal

05/10/2023

Signal & Power Integrity Updates in Ansys 2023 R1 - Webinar

04/26/2023

Additive Manufacturing Updates in Ansys 2023 R1 - Webinar

04/20/2023

38th Space Symposium Arizona Space Industry

More Info

04/19/2023

38th Space Symposium
Arizona Space Industry

04/19/2023

Additive Aids for Manufacturing - Webinar

04/18/2023

38th Space Symposium
Arizona Space Industry

04/17/2023

38th Space Symposium

04/13/2023

Venture Madness 2023

04/12/2023

Fluid Meshing & GPU-Solver Updates in Ansys 2023 R1 - Webinar

03/29/2023

8th Thermal and Fluids Engineering Conference

03/29/2023

Structural Updates in Ansys 2023 R1 - Composites, Fracture & MAPDL

03/28/2023

8th Thermal and Fluids Engineering Conference

03/27/2023

8th Thermal and Fluids Engineering Conference

03/26/2023

8TH Thermal and Fluids Engineering Conference

03/24/2023

Arizona BioPreneur Conference | Spring 2023

03/22/2023

2023 Arizona MedTech Conference

03/22/2023

Optimize Jigs & Fixtures with Additive - Webinar

03/15/2023

3D Design Updates in Ansys 2023 R1 - Webinar

03/08/2023

Competitive Advantages of 1D/3D Coupled Simulation - Webinar

03/01/2023

High Frequency Updates in Ansys 2023 R1 - Webinar

02/22/2023

Additive Advantages in Aerospace - Webinar

02/15/2023

Structural Updates in Ansys 2023 R1 (1) - Webinar

02/09/2023

IME 2023: MD&M | WestPack | ATX | D&M | Plastek

02/08/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

02/07/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

01/27/2023

Arizona Photonics Days, 2023

01/26/2023

Arizona Photonics Days, 2023

01/26/2023

TIPE 3D Printing | 2023

01/26/2023

Venture Cafe Phoenix Talent Night - Job Fari

01/26/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/25/2023

Arizona Photonics Days, 2023

01/25/2023

Building A.M.- Utah: Kickoff!

01/25/2023

TIPE 3D Printing | 2023

01/25/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

TIPE 3D Printing | 2023

01/18/2023

2023 AZ Tech Council Golf Tournament

12/21/2022

Simulation Best Practices for 5G Technology - Webinar

12/14/2022

Digital Twins Updates in Ansys 2022 R2 - Webinar

12/08/2022

Tech the Halls - AZ Tech Council Holiday Mixer

12/07/2022

Electric Vehicle and Other Infrastructure Update Panel

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

10/17/2022

Experience Stratasys Truck Tour - Clearfield Utah

10/14/2022

ASU School of Manufacturing Systems and Networks - Formal Opening Cele

10/14/2022

Experience Stratasys Truck Tour - Midvale Utah

10/12/2022

Experience Stratasys Truck Tour - Littleton Colorado

10/06/2022

Fluids Updates in Ansys 2022 R2 - Webinar

10/05/2022

Experience Stratasys Truck Tour - Colorado Springs

09/29/2022

White Hat Life Science Investor Conference - 2022

09/28/2022

2022 AZBio Awards

09/28/2022

Simulation Best Practices for Rotating Machinery Design & Development

09/21/2022

ExperienceIT NM 2022

09/21/2022

Additive Updates in Ansys 2022 R2 - Webinar

09/14/2022

Rocky Mountain Life Sciences Investor & Partnering Conference

09/08/2022

Ansys Optics Simulation User Group Meeting - Virtual

09/08/2022

Ansys Optics Simulation User Group Meeting

09/07/2022

SI & PI Updates in Ansys 2022 R2 - Webinar

08/31/2022

Simulation Best Practices for Developing Medical Devices - Webinar

08/24/2022

Mechanical Updates in Ansys 2022 R2 - Webinar

08/10/2022

Tucson after5 Tech Mixer: Ruda-Cardinal

08/05/2022

Flagstaff Tech Tour, 2022

08/02/2022

2022 CEO Leadership Retreat

08/01/2022

2022 CEO Leadership Retreat

07/27/2022

Thermal Integrity Updates in Ansys 2022 R1 - Webinar

07/20/2022

Simulation Best Practices for the Pharmaceutical Industry - Webinar

07/14/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

Additive & Structural Optimization Updates in Ansys 2022 R1 - Webinar

07/07/2022

Arizona AADM Conference, 2022

06/29/2022

LS-DYNA Updates & Advancements in Ansys 2022 R1 - Webinar

06/23/2022

Simulation Best Practices for Wind Turbine Design - Webinar

06/15/2022

MAPDL Updates & Advancements in Ansys 2022 R1 - Webinar

06/01/2022

Mechanical Updates in Ansys 2022 R1 - pt. 2 Webinar

05/26/2022

Modelling liquid cryogenic rocket engines in Flownex - Webinar

05/25/2022

SMR & Advanced Reactor 2022

05/25/2022

05/24/2022

SMR & Advanced Reactor 2022

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: