Using Ansys Fluent’s Gradient-Based Optimization

By: Tom Chadwick
– October 5, 2021
Categories:

There is a new workflow that has been developed for the Fluent CFD solver.  It is called gradient-based optimization.  It uses the adjoint solver, which computes the linearized derivatives of a single output variable with respect to all the input variables.  It then calculates separate sensitivity fields for the inputs.  Based on the sensitivity fields, it determines which inputs to change to maximize the desired change in the output variable.

The optimization tool is accessed through the Design tab in the Fluent menu.

There are several observable types that can be optimized for:

The first step in the process is to calculate a steady state solution of the problem.  Once a converged solution has been obtained for steady state solution, an adjoint solution is evaluated to either maximize or minimize the desired observable.

Once the evaluation is completed, the adjoint solution is calculated.

The next step is to use the Design Tool menu to define the wall boundaries that will be modified by the optimization process and what portions of those boundaries.

To perform an individual iteration in the optimization process, click on the Calculate Design Change button in the Design Tool window.  If you are looking to achieve a larger change to the observable, series of iterations will need to be run.  This can be done automatically using the Gradient-Based Optimizer tool.

To test out the capability of this new optimization tool, I ran a simple model of a u-bend pipe and optimized it to reduce the pressure drop through the bend by 40%.  The initial solution of the pipe resulted in pressure contours shown below.

When the optimizer was run to reduce the pressure drop through the model by 40%, the optimization history is as follows:

The resulting pressure contours and pipe geometry are shown below.

The change to the shape of the tube is not something that would be easy to determine without this tool.  It is very easy to use and will allow users to quickly optimize the geometry of their designs.

As you can see, this new capability allows one to quickly optimize flowpath shapes to accomplish optimization objectives. Hopefully you have found this useful and we encourage you to explore this and other enhancements to Ansys Fluent.

Categories

Certified Elite Channel Partner

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Product Development
Diamond Partner

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: Phoenix Analysis and Design Technologies, 7755 S. Research Dr., Tempe, AZ, 85284, https://www.padtinc.com. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Share on twitter
Share on facebook
Share on linkedin
Share on pinterest

Upcoming Events

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

05/04/2022

Mechanical Meshing Updates in Ansys 2022 R1 - Webinar

04/27/2022

04/22/2022

12TH ANNUAL TUCSON GOLF TOURNAMENT

04/21/2022

04/20/2022

Additional Fluids Updates in Ansys 2022 R1

04/20/2022

Experience Stratasys Tour – Tempe Arizona

04/18/2022

Experience Stratasys Tour - Flagstaff Arizona

04/14/2022

D&M West | MD&M West

04/13/2022

D&M West | MD&M West

04/13/2022

Experience Stratasys Tour - Albuquerque New Mexico

04/12/2022

D&M West | MD&M West

04/12/2022

Experience Stratasys Tour - Los Alamos New Mexico

04/12/2022

Optimizing Engineering Workflows f​​​​or Propulsion System Design

04/07/2022

Experience Stratasys Tour - Austin Texas

04/07/2022

37th Space Symposium - Arizona Space Industry

04/06/2022

Transforming Digital Engineering with Ansys Discovery 2022 R1

04/06/2022

37th Space Symposium - Arizona Space Industry

04/05/2022

37th Space Symposium - Arizona Space Industry

04/04/2022

37th Space Symposium - Arizona Space Industry

03/30/2022

Simulation Best Practices for Vehicle Engineering - Webinar

03/23/2022

03/23/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R1

02/24/2022

Arizona Technology Council After 5 Tech Mixer "Pandemic Pivot Pizza Pa

02/23/2022

SciTech Festival: Spend an Hour with 3D Printing Experts

02/11/2022

Webinar: Mechanical overview for Ansys 2022 R1

More Info

02/09/2022

Webinar: Product Development 101 (FAKE)

02/08/2022

Webinar: Navigating the Additive Landscape

01/27/2022

Arizona Technology Council 1st Quarter VIP Tech Mixer

More Info

01/26/2022

Simulation Best Practices for Gas Turbine Design & Development - Webin

More Info

01/19/2022

Arizona Photonics Days

More Info

11/04/2021

ExperienceIT, New Mexico

More Info

11/03/2021

Additive Manufacturing & Structural Optimization in Ansys 2021 R2 - We

More Info

11/03/2021

Optics Valley Technical Series: The Future of Simulation in the Optics

More Info

11/02/2021

SBIR Liftoff AZTC Virtual Breakfast Series

More Info

10/10/2021

Stratasys Mobile Truck Stop - Tucson Arizona

More Info

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: