New Paper: Exploring Optimization in Nature Through Simulation and 3D Printing

PADT NASA ASU hexagonal honeycomb radius optimization - Title Figure

PADT’s Alex Grishin, PhD Partners with ASU Faculty and Staff to study “Parametric optimization of corner radius in hexagonal honeycombs under in-plane compression”

While working together on a NASA-funded PHASE 1 STTR, PADT and ASU were exploring how nature has evolved optimized structures. In their preliminary research, they became fascinated by the way insects built a different corner radius in “hexagonal cell nests.” These structures, the best-known example are honeycombs, use a repeated hexagonal cell, but the corners in the cell always have a radius.

PADT NASA ASU hexagonal honeycomb radius optimization - Figure 1
Hexagonal unit cells in social insect nests with corner radii: (a) honey bee (b)  wasp, and (c) a different wasp.
PADT NASA ASU hexagonal honeycomb radius optimization f04

This interest turned into the question, what is the optimal corner radius for a given compressive load? Several years and groups of grad students later, the resulting research was published in the Journal of Manufacturing Processes, Volume 79, in July of 2022.

You can read the paper at this link.

As the abstract points out, they used a 400-point design of experiments study using parametric 2D plane strain Ansys Mechanical model to look at how cell size, beam geometry, and corner radius impacted the effective stiffness and corner stresses. They found an optimum corner radius that was a function of beam thickness, beamwidth, and the ratio of width to thickness.

PADT NASA ASU hexagonal honeycomb radius optimization - Figure 2
Results showing how radius impacts the location, magnitude, and topology of the maximum stress distribution.

Further large deflection simulation and then testing showed that changes in the corner radius shifted the failure mode under increasing compression from fracture to plastic hinging. This is important because honeycomb structures are used for energy absorption applications like bumpers and crumple zones. Extensive 3D Printing of both polymer and metal structures was used to create the cellular structures being optimized.

PADT NASA ASU hexagonal honeycomb radius optimization - Figure 3

Dr. Grishin worked with ASU Professor Dhruv Bhate, PhD, and a variety of students over the course of the study. This project came out of a PHASE1 STTR that was followed by two more STTR efforts:

The Phase III study will is focused on developing a multiphysics optimization tool that, like nature, optimizes geometry for multiple loads applied via different physics – structural, thermal, vibration, and fluid flow.

We want to thank our academic partners and especially our supporters at NASA. The opportunity to use advanced technology like 3D Printing and Simulation along with traditional testing was a fantastic opportunity for students to explore biomimicry and understand the physics and math behind natural structures.

Combining 3D Printing and Simulation to Explore and Understand

This project is a great example of how PADT combines its three core technologies, Simulation, Design, and Additive Manufacturing to help our partners and customers achieve their goals. In this situation, we aided in accomplishing meaningful and commercially useful research. How can we help your team meet your goals? Reach out, and let’s talk about it.

Bee, Honeybee, Honeycomb, Close-Up, Macro, Insect

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

Share this post:

Upcoming Events

Apr 23
, 2025
Explicit Dynamics Updates in Ansys 2025 R1 - Webinar
Apr 29
, 2025
New NVH Tools & Workflows in Ansys 2025 R1 - Webinar
Apr 29
, 2025
Design, Debug, and Test your Ansys Scade One Model - Webinar
May 07
, 2025
Meshing Updates in Ansys 2025 R1 - Webinar
May 21
, 2025
Optics Updates in Ansys 2025 R1 - Webinar
Jun 04
, 2025
Composites & Structural Optimization Updates in Ansys 2025 R1 - Webinar
Jun 09
- Jun 11
, 2025
TechConnect World 2025
Jun 18
, 2025
Fluent CPU - UI & UX Updates in Ansys 2025 R1 - Webinar
Jun 16
- Jun 20
, 2025
Turbo Expo
Jun 25
, 2025
E-Mobility and Clean Energy Summit
Jul 02
, 2025
Electric Machine & Consumer Electronics Updates in Ansys 2025 R1 - Webinar
Jul 11
, 2025
2025 Aerospace, Aviation, Defense and Manufacturing Conference
Jul 16
, 2025
HFSS Updates in Ansys 2025 R1 - Webinar
Aug 10
- Aug 13
, 2025
SmallSat 2025

Search the PADT Site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: