New Paper: Exploring Optimization in Nature Through Simulation and 3D Printing

PADT NASA ASU hexagonal honeycomb radius optimization - Title Figure
By: Eric Miller
– May 6, 2022

PADT’s Alex Grishin, PhD Partners with ASU Faculty and Staff to study “Parametric optimization of corner radius in hexagonal honeycombs under in-plane compression”

While working together on a NASA-funded PHASE 1 STTR, PADT and ASU were exploring how nature has evolved optimized structures. In their preliminary research, they became fascinated by the way insects built a different corner radius in “hexagonal cell nests.” These structures, the best-known example are honeycombs, use a repeated hexagonal cell, but the corners in the cell always have a radius.

PADT NASA ASU hexagonal honeycomb radius optimization - Figure 1
Hexagonal unit cells in social insect nests with corner radii: (a) honey bee (b)  wasp, and (c) a different wasp.

This interest turned into the question, what is the optimal corner radius for a given compressive load? Several years and groups of grad students later, the resulting research was published in the Journal of Manufacturing Processes, Volume 79, in July of 2022.

You can read the paper at this link.

As the abstract points out, they used a 400-point design of experiments study using parametric 2D plane strain Ansys Mechanical model to look at how cell size, beam geometry, and corner radius impacted the effective stiffness and corner stresses. They found an optimum corner radius that was a function of beam thickness, beamwidth, and the ratio of width to thickness.

PADT NASA ASU hexagonal honeycomb radius optimization - Figure 2
Results showing how radius impacts the location, magnitude, and topology of the maximum stress distribution.

Further large deflection simulation and then testing showed that changes in the corner radius shifted the failure mode under increasing compression from fracture to plastic hinging. This is important because honeycomb structures are used for energy absorption applications like bumpers and crumple zones. Extensive 3D Printing of both polymer and metal structures was used to create the cellular structures being optimized.

PADT NASA ASU hexagonal honeycomb radius optimization - Figure 3

Dr. Grishin worked with ASU Professor Dhruv Bhate, PhD, and a variety of students over the course of the study. This project came out of a PHASE1 STTR that was followed by two more STTR efforts:

The Phase III study will is focused on developing a multiphysics optimization tool that, like nature, optimizes geometry for multiple loads applied via different physics – structural, thermal, vibration, and fluid flow.

We want to thank our academic partners and especially our supporters at NASA. The opportunity to use advanced technology like 3D Printing and Simulation along with traditional testing was a fantastic opportunity for students to explore biomimicry and understand the physics and math behind natural structures.

Combining 3D Printing and Simulation to Explore and Understand

This project is a great example of how PADT combines its three core technologies, Simulation, Design, and Additive Manufacturing to help our partners and customers achieve their goals. In this situation, we aided in accomplishing meaningful and commercially useful research. How can we help your team meet your goals? Reach out, and let’s talk about it.

Bee, Honeybee, Honeycomb, Close-Up, Macro, Insect
Categories

Certified Elite Channel Partner

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Product Development
Diamond Partner

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: Phoenix Analysis and Design Technologies, 7755 S. Research Dr., Tempe, AZ, 85284, https://www.padtinc.com. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Share on twitter
Share on facebook
Share on linkedin
Share on pinterest

Upcoming Events

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

05/04/2022

Mechanical Meshing Updates in Ansys 2022 R1 - Webinar

04/27/2022

04/22/2022

12TH ANNUAL TUCSON GOLF TOURNAMENT

04/21/2022

04/20/2022

Additional Fluids Updates in Ansys 2022 R1

04/20/2022

Experience Stratasys Tour – Tempe Arizona

04/18/2022

Experience Stratasys Tour - Flagstaff Arizona

04/14/2022

D&M West | MD&M West

04/13/2022

D&M West | MD&M West

04/13/2022

Experience Stratasys Tour - Albuquerque New Mexico

04/12/2022

D&M West | MD&M West

04/12/2022

Experience Stratasys Tour - Los Alamos New Mexico

04/12/2022

Optimizing Engineering Workflows f​​​​or Propulsion System Design

04/07/2022

Experience Stratasys Tour - Austin Texas

04/07/2022

37th Space Symposium - Arizona Space Industry

04/06/2022

Transforming Digital Engineering with Ansys Discovery 2022 R1

04/06/2022

37th Space Symposium - Arizona Space Industry

04/05/2022

37th Space Symposium - Arizona Space Industry

04/04/2022

37th Space Symposium - Arizona Space Industry

03/30/2022

Simulation Best Practices for Vehicle Engineering - Webinar

03/23/2022

03/23/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R1

02/24/2022

Arizona Technology Council After 5 Tech Mixer "Pandemic Pivot Pizza Pa

02/23/2022

SciTech Festival: Spend an Hour with 3D Printing Experts

02/11/2022

Webinar: Mechanical overview for Ansys 2022 R1

More Info

02/09/2022

Webinar: Product Development 101 (FAKE)

02/08/2022

Webinar: Navigating the Additive Landscape

01/27/2022

Arizona Technology Council 1st Quarter VIP Tech Mixer

More Info

01/26/2022

Simulation Best Practices for Gas Turbine Design & Development - Webin

More Info

01/19/2022

Arizona Photonics Days

More Info

11/04/2021

ExperienceIT, New Mexico

More Info

11/03/2021

Additive Manufacturing & Structural Optimization in Ansys 2021 R2 - We

More Info

11/03/2021

Optics Valley Technical Series: The Future of Simulation in the Optics

More Info

11/02/2021

SBIR Liftoff AZTC Virtual Breakfast Series

More Info

10/10/2021

Stratasys Mobile Truck Stop - Tucson Arizona

More Info

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: