All Things Ansys 079: The State of Simulation for Additive Manufacturing


Published on: January 11th, 2020
With: Eric Miller & Brent Stucker

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Brent Stucker, the Director of Additive Manufacturing at Ansys to discuss the innovative capabilities of the Ansys additive suite of tools and it’s impact on the effectiveness of 3D printing for manufacturing and design.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at we would love to hear from you!



All Things Ansys 078: Optimization & Automation Updates in Ansys 2020 R2 – OptiSLang


Published on: December 14th, 2020
With: Eric Miller & Josh Stout

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Systems Support & Application Engineer Josh Stout for a discussion on how OptiSLang helps to increase the robustness and reliability of simulation, as well as a look at what new features are in the 2020 R2 updated version.

If you would like to learn more about this update, you can view Josh’s webinar on the topic here:

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at we would love to hear from you!



Optimization & Automation Updates in Ansys 2020 R2 – Webinar

Simulation is becoming an integral part of our customers’ product development processes, and new horizons await. By combining different physics into a multidisciplinary approach, phenomena can be investigated more holistically and optimized to a greater degree. Additionally, simulation processes can be standardized and shared across teams, allowing simulation novices to gain more direct access to simulation.

Time-consuming manual searches for the best and most robust design configuration can now be accelerated by adding state-of-the-art algorithms for design exploration, optimization, robustness and reliability analysis. Through the power of interactive visualization and artificial intelligence technologies, engineers and designers can gain a better understanding of their design and make the right decisions in less time.

The process integration and design optimization solution that enables all the above is Ansys optiSLang.

Join PADT’s Mechanical Application Engineer and Systems Expert Josh Stout for an exploration of this interconnected tool and what new capabilities are available in it’s 2020 R2 release.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things Ansys 077: Multibody Dynamics Updates in Ansys Motion 2020 R2


Published on: November 30th, 2020
With: Eric Miller & Jim Peters

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Senior Staff Technologist Jim Peters for a discussion on the new capabilities available within Ansys Motion 2020 R2. With an integration into Mechanical, users can take advantage of multi-use models resulting in substantial time savings.

If you would like to learn more about this update, you can view Jim’s webinar on the topic here:

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at we would love to hear from you!



Multibody Dynamics Updates in Ansys Motion 2020 R2 – Webinar

Ansys Motion, now in the Mechanical interface, is a third generation engineering solution based on an advanced multibody dynamics solver that enables fast and accurate analysis of rigid and flexible bodies and gives an accurate evaluation of physical events through the analysis of the mechanical system as a whole.

Ansys Motion uses four tightly integrated solving schemes (rigid body, flexible body, modal & meshfree EasyFlex) that give the user unparalleled capabilities to analyze in any combination imaginable. Large assemblies with millions of degrees of freedom can be studied with the effects of flexibility and contact included. With an integration into Mechanical, users can take advantage of multi-use models resulting in substantial time savings.

Join PADT’s Senior Staff Technologist, Jim Peters for an exploration of what this tool has to offer, and how seamlessly it integrates with the Ansys Mechanical interface.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things Ansys 076: MAPDL – Elements, Contact & Solver Updates in Ansys 2020 R2


Published on: November 16th, 2020
With: Eric Miller & Ted Harris

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Simulation Support Manager Ted Harris for a discussion on what’s new in the Ansys Mechanical APDL 2020 R2 release.

If you would like to learn more about this update, you can view Ted’s webinar on the topic here:

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at we would love to hear from you!



MAPDL – Elements, Contact & Solver Updates in Ansys 2020 R2 – Webinar

The Ansys finite element solvers enable a breadth and depth of capabilities unmatched by anyone in the world of computer-aided simulation. Thermal, Structural, Acoustic, Piezoelectric, Electrostatic and Circuit Coupled Electromagnetics are just an example of what can be simulated. Regardless of the type of simulation, each model is represented by a powerful scripting language, the Ansys Parametric Design Language (APDL).

APDL is the foundation for all sophisticated features, many of which are not exposed in the Workbench Mechanical user interface. It also offers many conveniences such as parameterization, macros, branching and looping, and complex math operations. All these benefits are accessible within the Ansys Mechanical APDL user interface.

Join PADT’s Simulation Support Manager, Ted Harris for a look at what’s new for MAPDL in Ansys 2020 R2, regarding:

  • Contact Modeling & Robustness
  • Elements
  • Post Processing
  • Solver Components
  • And Much More

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things Ansys 075: Optical System Design & Disruption in Ansys SPEOS 2020 R2


Published on: November 2nd, 2020
With: Eric Miller & Robert McCathren

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Application Engineer Robert McCathren for a look at how Ansys 2020 R2 empowers SPEOS users to go further than ever before with enhancements that improve the handling of complex sensors, project preview and computation.

If you would like to learn more about this update, you can view Robert’s webinar on the topic here:

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at we would love to hear from you!



Introducing Level Up – An Ansys Mechanical Virtual Conference

PADT & Ansys are excited to announce Level Up with Ansys Mechanical, a free virtual technical conference on Wednesday, December 2, 2020 at 10 a.m. EST.

For the past 50 years, Ansys Mechanical continues to be the go-to finite element analysis platform for structural analysis, and they’re just getting warmed up. Join visionary Ansys product development, product management and engineering leaders as they provide expert insights on Mechanical’s technology advances and preview the platform’s future.

From those engineers looking to boot up their simulation experience to those seeking to step up their simulation skills, and even those operating in “beast mode”, who execute large and complex workflows, this action-packed event showcases how Mechanical radically transforms product design.

Highlights include: 

  • Learn the latest with scripting and automation to save valuable time
  • Discover how to lightweight product designs with structural optimization methods
  • Understand how to couple multiple physics to assess performance in the real world
  • And so much more

Catch the thought-provoking plenary presentation, engage with Ansys’ brightest during the live Q&A, and interact with fellow engineers during live polls. 

Register Here

Introducing the All-new Ansys Discovery

Leveraging the all-new Ansys Discovery product early in your product design processes will drive substantial gains in engineering productivity, spur innovation and increase your product’s overall performance.

And we can prove it.

Register Here:

Join #Ansys on July 29th, 11:00 am EDT for this virtual launch event where visionary leaders will deliver dynamic insights on the product, perform cutting-edge technology demonstrations and share real-world customer successes.

Changes to Licencing at ANSYS 2020R1

There are three main goals of the licensing changes in the latest release of ANSYS:

  • Deliver Ansys licensing using the FlexLM industry standard
  • Eliminate the Ansys licensing interconnect
  • Provide modular licensing options that are easier to understand
  • Finally – and this is the whopper (or Double Double if you’re an In-N-Out kind of analogy person) – this new licensing model eliminates the need for upgrading the Ansys License Manager with every software update. (please pause for shock recovery)
If you’re still shocked and would to like see a “shocked groundhog” compilation, check this out.

Why is this significant? Well, this was always a sticking point for our customers when upgrading from one version to the next.

Here’s how that usually plays out:

  1. Engineers eager to try out new features or overcome software defects, download the software and install it on their workstations.
    1. Surprise – software throws an obscure licensing error.
    2. Engineer notifies IT or Ansys Channel partner of issue.
    3. After a few calls, maybe a screenshare or two, its determined that the license server needs to be upgraded.
    4. The best-case scenario – IT or PADT Support can get it installed in a few minutes and engineer can be on his way.
    5. The usual scenario – it will take a week to schedule downtime on the server and notify all stakeholders and the engineer is left to simmer on medium-low until those important safeguards are handled.

What does this all mean?

  • Starting in January 2020, all new Ansys keys issued will be in the new format and will require upgrading to the 2020R1 License manager. This should be the last mandatory license server upgrade for a while.
  • Your Ansys Channel Partner will contact you ahead of your next renewal to discuss new license increments and if there are any expected changes.
  • Your IT and Ansys support team will be celebrating in the back office the last mandatory Ansys License Manager upgrade for a while.

How to upgrade the Ansys License Manager?

Download the latest license manager through the Ansys customer portal:

Follow installation instructions and add the latest license file:

  • Ansys has a handy video on this here
  • Make sure that you run the installed as an administrator for best results.

Make sure license server is running and has the correct licenses queued:

  • Look for the green checkmark in the license management center window.
  • Start your application and make sure everything looks good.

This was a high-level flyover of the new Ansys Licensing released with version 2020R1. For specifics contact your PADT Account manager or .

Making Sense of DC IR Results in Ansys SIwave

In this article I will cover a Voltage Drop (DC IR) simulation in SIwave, applying realistic power delivery setup on a simple 4-layer PCB design. The main goal for this project is to understand what data we receive by running DC IR simulation, how to verify it, and what is the best way of using it.

And before I open my tools and start diving deep into this topic, I would like to thank Zachary Donathan for asking the right questions and having deep meaningful technical discussions with me on some related subjects. He may not have known, but he was helping me to shape up this article in my head!

Design Setup

There are many different power nets present on the board under test, however I will be focusing on two widely spread nets +1.2V and +3.3V. Both nets are being supplied through Voltage Regulator Module (VRM), which will be assigned as a Voltage Source in our analysis. After careful assessment of the board design, I identified the most critical components for the power delivery to include in the analysis as Current Sources (also known as ‘sinks’). Two DRAM small outline integrated circuit (SOIC) components D1 and D2 are supplied with +1.2V. While power net +3.3V provides voltage to two quad flat package (QFP) microcontrollers U20 and U21, mini PCIE connector, and hex Schmitt-Trigger inverter U1.

Fig. 1. Power Delivery Network setting for a DC IR analysis

Figure 1 shows the ‘floor plan’ of the DC IR analysis setup with 1.2V voltage path highlighted in yellow and 3.3V path highlighted in light blue.

Before we assign any Voltage and Current sources, we need to define pin groups for all nets +1.2V, +3.3V and GND for all PDN component mentioned above. Having pin groups will significantly simplify the reviewing process of the results. Also, it is generally a good practice to start the DC IR analysis from the ‘big picture’ to understand if certain component gets enough power from the VRM. If a given IC reports an acceptable level of voltage being delivered with a good margin, then we don’t need to dig deeper; we can instead focus on those which may not have good enough margins.

Once we have created all necessary pin groups, we can assign voltage and current sources. There are several ways of doing that (using wizard or manual), for this project we will use ‘Generate Circuit Element on Components’ feature to manually define all sources. Knowing all the components and having pin groups already created makes the assignment very straight-forward. All current sources draw different amount of current, as indicated in our setting, however all current sources have the same Parasitic Resistance (very large value) and all voltage source also have the same Parasitic Resistance (very small value). This is shown on Figure 2 and Figure 3.

Note: The type of the current source ‘Constant Voltage’ or ‘Distributed Current’ matters only if you are assigning a current source to a component with multiple pins on the same net, and since in this project we are working with pins groups, this setting doesn’t make difference in final results.

Fig. 2. Voltage and Current sources assigned
Fig. 3. Parasitic Resistance assignments for all voltage and current sources

For each power net we have created a voltage source on VRM and multiple current sources on ICs and the connector. All sources have a negative node on a GND net, so we have a good common return path. And in addition, we have assigned a negative node of both voltage sources (one for +1.2V and one for +3.3V) as our reference points for our analysis. So reported voltage values will be referenced to that that node as absolute 0V.

At this point, the DC IR setup is complete and ready for simulation.

Results overview and validation

When the DC IR simulation is finished, there is large amount of data being generated, therefore there are different ways of viewing results, all options are presented on Figure 4. In this article I will be primarily focusing on ‘Power Tree’ and ‘Element Data’. As an additional source if validation we may review the currents and voltages overlaying the design to help us to visualize the current flow and power distribution. Most of the time this helps to understand if our assumption of pin grouping is accurate.

Fig. 4. Options to view different aspects of DC IR simulated data

Power Tree

First let’s look at the Power Tree, presented on Figure 5. Two different power nets were simulated, +1.2V and +3.3V, each of which has specified Current Sources where the power gets delivered. Therefore, when we analyze DC IR results in the Power tree format, we see two ‘trees’, one for each power net. Since we don’t have any pins, which would get both 1.2V and 3.3V at the same time (not very physical example), we don’t have ‘common branches’ on these two ‘trees’.

Now, let’s dissect all the information present in this power tree (taking in consideration only one ‘branch’ for simplicity, although the logic is applicable for all ‘branches’):

  • We were treating both power nets +1.2V and +3.3V as separate voltage loops, so we have assigned negative nodes of each Voltage Source as a reference point. Therefore, we see the ‘GND’ symbol ((1) and (2)) for each voltage source. Now all voltage calculations will be referenced to that node as 0V for its specific tree.
  • Then we see the path from Voltage Source to Current Source, the value ΔV shows the Voltage Drop in that path (3). Ultimately, this is the main value power engineers usually are interested in during this type of analysis. If we subtract ΔV from Vout we will get the ‘Actual Voltage’ delivered to the specific current source positive pin (1.2V – 0.22246V = 0.977V). That value reported in the box for the Current Source (4). Technically, the same voltage drop value is reported in the column ‘IR Drop’, but in this column we get more details – we see what the percentage of the Vout is being dropped. Engineers usually specify the margin value of the acceptable voltage drop as a percentage of Vout, and in our experiment we have specified 15%, as reported in column ‘Specification’. And we see that 18.5% is greater than 15%, therefore we get ‘Fail_I_&_V’ results (6) for that Current Source.
  • Regarding the current – we have manually specified the current value for each Current Source. Current values in Figure 2 are the same as in Figure 5. Also, we can specify the margin for the current to report pass or fail. In our example we assigned 108A as a current at the Current Source (5), while 100A is our current limit (4). Therefore, we also got failed results for the current as well.
  • As mentioned earlier, we assigned current values for each Current Source, but we didn’t set any current values for the Voltage Source. This is because the tool calculates how much current needs to be assigned for the Voltage Source, based on the value at the Current Sources. In our case we have 3 Current Sources 108A, 63A, 63A (5). The sum of these three values is 234A, which is reported as a current at the Voltage Source (7). Later we will see that this value is being used to calculate output power at the Voltage Source.  
Fig. 5. DC IR simulated data viewed as a ‘Power Tree’

Element Data

This option shows us results in the tabular representation. It lists many important calculated data points for specific objects, such as bondwire, current sources, all vias associated with the power distribution network, voltage probes, voltage sources.

Let’s continue reviewing the same power net +1.2V and the power distribution to CPU1 component as we have done for Power Tree (Figure 5). The same way we will be going over the details in point-by-point approach:

  • First and foremost, when we look at the information for Current Sources, we see a ‘Voltage’ value, which may be confusing. The value reported in this table is 0.7247V (8), which is different from the reported value of 0.977V in Power Tree on Figure 5 (4). The reason for the difference is that reported voltage value were calculated at different locations. As mentioned earlier, the reported voltage in the Power Tree is the voltage at the positive pin of the Current Source. The voltage reported in Element Data is the voltage at the negative pin of the Current Source, which doesn’t include the voltage drop across the ground plane of the return path.

To verify the reported voltage values, we can place Voltage Probes (under circuit elements). Once we do that, we will need to rerun the simulation in order to get the results for the probes:

  1. Two terminals of the ‘VPROBE_1’ attached at the positive pin of Voltage Source and at the positive pin of the Current Source. This probe should show us the voltage difference between VRM and IC, which also the same as reported Voltage Drop ΔV. And as we can see ‘VPROBE_1’ = 222.4637mV (13), when ΔV = 222.464mV (3). Correlated perfectly!
  2. Two terminals of the ‘VPROBE_GND’ attached to the negative pin of the Current Source and negative pin of the Voltage Source. The voltage shown by this probe is the voltage drop across the ground plane.

If we have 1.2V at the positive pin of VRM, then voltage drops 222.464mV across the power plane, so the positive pin of IC gets supplied with 0.977V. Then the voltage at the Current Source 0.724827V (8) being drawn, leaving us with (1.2V – 0.222464V – 0.724827V) = 0.252709V at the negative pin of the Current Source. On the return path the voltage drops again across the ground plane 252.4749mV (14) delivering back at the negative pin of VRM (0.252709V – 0.252475V) = 234uV. This is the internal voltage drop in the Voltage Source, as calculated as output current at VRM 234A (7) multiplied by Parasitic Resistance 1E-6Ohm (Figure 3) at VRM. This is Series R Voltage (11)

  • Parallel R Current of the Current source is calculated as Voltage 724.82mV (8) divided by Parasitic Resistance of the Current Source (Figure 3) 5E+7 Ohm = 1.44965E-8 (9)
  • Current of the Voltage Source report in the Element Data 234A (10) is the same value as reported in the Power Tree (sum of all currents of Current Sources for the +1.2V power net) = 234A (7). Knowing this value of the current we can multiple it by Parasitic Resistance of the Voltage Source (Figure 3) 1E-6 Ohm = (234A * 1E-6Ohm) = 234E-6V, which is equal to reported Series R Voltage (11). And considering that the 234A is the output current of the Voltage Source, we can multiple it by output voltage Vout = 1.2V to get a Power Output = (234A * 1.2V) = 280.85W (12)
Fig. 6. DC IR simulated data viewed in the table format as ‘Element Data’

In addition to all provided above calculations and explanations, the video below in Figure 7 highlights all the key points of this article.

Fig. 7. Difference between reporting Voltage values in Power Tree and Element Data


By carefully reviewing the Power Tree and Element Data reporting options, we can determine many important decisions about the power delivery network quality, such as how much voltage gets delivered to the Current Source; how much voltage drop is on the power net and on the ground net, etc. More valuable information can be extracted from other DC IR results options, such as ‘Loop Resistance’, ‘Path Resistance’, ‘RL table’, ‘Spice Netlist’, full ‘Report’. However, all these features deserve a separate topic.

As always, if you would like to receive more information related to this topic or have any questions please reach out to us at

Efficient and Accurate Simulation of Antenna Arrays in Ansys HFSS

Unit-cell in HFSS

HFSS offers different method of creating and simulating a large array. The explicit method, shown in Figure 1(a) might be the first method that comes to our mind. This is where you create the exact CAD of the array and solve it. While this is the most accurate method of simulating an array, it is computationally extensive. This method may be non-feasible for the initial design of a large array. The use of unit cell (Figure 1(b)) and array theory helps us to start with an estimate of the array performance by a few assumptions. Finite Array Domain Decomposition (or FADDM) takes advantage of unit cell simplicity and creates a full model using the meshing information generated in a unit cell. In this blog we will review the creation of unit cell. In the next blog we will explain how a unit cell can be used to simulate a large array and FADDM.

Fig. 1 (a) Explicit Array
Fig. 1 (b) Unit Cell
Fig. 1 (c) Finite Array Domain Decomposition (FADDM)

In a unit cell, the following assumptions are made:

  • The pattern of each element is identical.
  • The array is uniformly excited in amplitude, but not necessarily in phase.
  • Edge affects and mutual coupling are ignored
Fig. 2 An array consisting of elements amplitude and phases can be estimated with array theory, assuming all elements have the same amplitude and element radiation patterns. In unit cell simulation it is assumed all magnitudes (An’s) are equal (A) and the far field of each single element is equal.

A unit cell works based on Master/Slave (or Primary/Secondary) boundary around the cell. Master/Slave boundaries are always paired. In a rectangular cell you may use the new Lattice Pair boundary that is introduced in Ansys HFSS 2020R1. These boundaries are means of simulating an infinite array and estimating the performance of a relatively large arrays. The use of unit cell reduces the required RAM and solve time.

Primary/Secondary (Master/Slave) (or P/S) boundaries can be combined with Floquet port, radiation or PML boundary to be used in an infinite array or large array setting, as shown in Figure 3.

Fig. 3 Unit cell can be terminated with (a) radiation boundary, (b) Floquet port, (c) PML boundary, or combination of them.

To create a unit cell with P/S boundary, first start with a single element with the exact dimensions of the cell. The next step is creating a vacuum or airbox around the cell. For this step, set the padding in the location of P/S boundary to zero. For example, Figure 4 shows a microstrip patch antenna that we intend to create a 2D array based on this model. The array is placed on the XY plane. An air box is created around the unit cell with zero padding in X and Y directions.

Fig. 4 (a) A unit cell starts with a single element with the exact dimensions as it appears in the lattice
Fig. 4 (b) A vacuum box is added around it

You notice that in this example the vacuum box is larger than usual size of quarter wavelength that is usually used in creating a vacuum region around the antenna. We will get to calculation of this size in a bit, for now let’s just assign a value or parameter to it, as it will be determined later. The next step is to define P/S to generate the lattice. In AEDT 2020R1 this boundary is under “Coupled” boundary. There are two methods to create P/S: (1) Lattice Pair, (2) Primary/Secondary boundary.

Lattice Pair

The Lattice Pair works best for square lattices. It automatically assigns the primary and secondary boundaries. To assign a lattice pair boundary select the two sides that are supposed to create infinite periodic cells, right-click->Assign Boundary->Coupled->Lattice Pair, choose a name and enter the scan angles. Note that scan angles can be assigned as parameters. This feature that is introduced in 2020R1 does not require the user to define the UV directions, they are automatically assigned.

Fig. 5 The lattice pair assignment (a) select two lattice walls
Fig. 5 (b) Assign the lattice pair boundary
Fig. 5 (c) After, right-click and choosing assign boundary > choose Lattice Pair
Fig. 5 (d) Phi and Theta scan angles can be assigned as parameters


Primary/Secondary boundary is the same as what used to be called Master/Slave boundary. In this case, each Secondary (Slave) boundary should be assigned following a Primary (Master) boundary UV directions. First choose the side of the cell that Primary boundary. Right-click->Assign Boundary->Coupled->Primary. In Primary Boundary window define U vector. Next select the secondary wall, right-click->Assign Boundary->Couple->Secondary, choose the Primary Boundary and define U vector exactly in the same direction as the Primary, add the scan angles (the same as Primary scan angles)

Fig. 6 Primary and secondary boundaries highlights.

Floquet Port and Modes Calculator

Floquet port excites and terminates waves propagating down the unit cell. They are similar to waveguide modes. Floquet port is always linked to P/S boundaries. Set of TE and TM modes travel inside the cell. However, keep in mind that the number of modes that are absorbed by the Floquet port are determined by the user. All the other modes are short-circuited back into the model. To assign a Floquet port two major steps should be taken:

Defining Floquet Port

Select the face of the cell that you like to assign the Floquet port. This is determined by the location of P/S boundary. The lattice vectors A and B directions are defined by the direction of lattice (Figure 7).

Fig. 7 Floquet port on top of the cell is defined based on UV direction of P/S pairs

The number of modes to be included are defined with the help of Modes Calculator. In the Mode Setup tab of the Floquet Port window, choose a high number of modes (e.g. 20) and click on Modes Calculator. The Mode Table Calculator will request your input of Frequency and Scan Angles. After selecting those, a table of modes and their attenuation using dB/length units are created. This is your guide in selecting the height of the unit cell and vaccume box. The attenation multiplied by the height of the unit cell (in the project units, defined in Modeler->Units) should be large enough to make sure the modes are attenuated enough so removing them from the calcuatlion does not cause errors. If the unit cell is too short, then you will see many modes are not attenuated enough. The product of the attenuatin and height of the airbox should be at least 50 dB. After the correct size for the airbox is calcualted and entered, the model with high attenuation can be removed from the Floquet port definition.

The 3D Refinement tab is used to control the inclusion of the modes in the 3D refinement of the mesh. It is recommended not to select them for the antenna arrays.

Fig. 8 (Left) Determining the scan angles for the unit cell, (Right) Modes Calculator showing the Attenuation

In our example, Figure 8 shows that the 5th mode has an attenuation of 2.59dB/length. The height of the airbox is around 19.5mm, providing 19.5mm*2.59dB/mm=50.505dB attenuation for the 5th mode. Therefore, only the first 4 modes are kept for the calculations. If the height of the airbox was less than 19.5mm, we would need to increase the height so accordingly for an attenuation of at least 50dB.

Radiation Boundary

A simpler alternative for Floquet port is radiation boundary. It is important to note that the size of the airbox should still be kept around the same size that was calculated for the Floquet port, therefore, higher order modes sufficiently attenuated. In this case the traditional quarter wavelength padding might not be adequate.

Fig. 9 Radiation boundary on top of the unit cell

Perfectly Matched Layer

Although using radiation boundary is much simpler than Floquet port, it is not accurate for large scan angles. It can be a good alternative to Floquet port only if the beam scanning is limited to small angles. Another alternative to Floquet port is to cover the cell by a layer of PML. This is a good compromise and provides very similar results to Floquet port models. However, the P/S boundary need to surround the PML layer as well, which means a few additional steps are required. Here is how you can do it:

  1. Reduce the size of the airbox* slightly, so after adding the PML layer, the unit cell height is the same as the one that was generated using the Modes Calculation. (For example, in our model airbox height was 19mm+substrte thickness, the PML height was 3mm, so we reduced the airbox height to 16mm).
  2. Choose the top face and add PML boundary.
  3. Select each side of the airbox and create an object from that face (Figure 10).
  4. Select each side of the PML and create objects from those faces (Figure 10).
  5. Select the two faces that are on the same plane from the faces created from airbox and PML and unite them to create a side wall (Figure 10).
  6. Then assign P/S boundary to each pair of walls (Figure 10).

*Please note for this method, an auto-size “region” cannot be used, instead draw a box for air/vacuum box. The region does not let you create the faces you need to combine with PML faces.

Fig. 10 Selecting two faces created from airbox and PML and uniting them to assign P/S boundaries

The advantage of PML termination over Floquet port is that it is simpler and sometimes faster calculation. The advantage over Radiation Boundary termination is that it provides accurate results for large scan angles. For better accuracy the mesh for the PML region can be defined as length based.

Seed the Mesh

To improve the accuracy of the PML model further, an option is to use length-based mesh. To do this select the PML box, from the project tree in Project Manager window right-click on Mesh->Assign Mesh Operation->On Selection->Length Based. Select a length smaller than lambda/10.

Fig. 11 Using element length-based mesh refinement can improve the accuracy of PML design

Scanning the Angle

In phased array simulation, we are mostly interested in the performance of the unit cell and array at different scan angles. To add the scanning option, the phase of P/S boundary should be defined by project or design parameters. The parameters can be used to run a parametric sweep, like the one shown in Figure 12. In this example the theta angle is scanned from 0 to 60 degrees.

Fig. 12 Using a parametric sweep, the scanned patterns can be generated

Comparing PML and Floquet Port with Radiation Boundary

To see the accuracy of the radiation boundary vs. PML and Floquet Port, I ran the simulations for scan angles up to 60 degrees for a single element patch antenna. Figure 13 shows that the accuracy of the Radiation boundary drops after around 15 degrees scanning. However, PML and Floquet port show similar performance.

Fig. 13 Comparison of radiation patterns using PML (red), Floquet Port (blue), and Radiation boundary (orange).

S Parameters

To compare the accuracy, we can also check the S parameters. Figure 14 shows the comparison of active S at port 1 for PML and Floquet port models. Active S parameters were used since the unit cell antenna has two ports. Figure 15 shows how S parameters compare for the model with the radiation boundary and the one with the Floquet port.

Fig. 14 Active S parameter comparison for different scan angles, PML vs. Floquet Port model.
Fig. 15 Active S parameter comparison for different scan angles, Radiation Boundary vs. Floquet Port model.


The unit cell definition and options on terminating the cell were discussed here. Stay tuned. In the next blog we discuss how the unit cell is utilized in modeling antenna arrays.