Press Release: PADT Expands its Operations in New Mexico With the Addition of 3D Printing Talent and Services

New 3D Printing Field Service Engineer Brings Exceptional 3D Printing Tooling and End-Part Production Skills and Knowledge to the Region

We are very pleased to announce that one of our 3D Printer experts is relocating to our New Mexico facility. Art Newcomer has moved to Albuquerque and will continue to support our Colorado and New Mexico cusotmers from there instead of our Littleton Office.

Read more in the press release below or as a PDF or HTML.

As always, if you have any questions, please contact us.


PADT Expands its Operations in New Mexico With the Addition of 3D Printing Talent and Services

New 3D Printing Field Service Engineer Brings Exceptional 3D Printing Tooling and End-Part Production Skills and Knowledge to the Region

TEMPE, Ariz., October XX, 2020 PADT, the Southwest’s leading provider of numerical simulation, product development, and 3D printing products and services, today announced 3D printing expert Art Newcomer is relocating from the company’s Colorado office to its long-standing New Mexico facility, located in Sandia Science & Technology Park (SS&TP). The move comes on the heels of PADT’s expanded capabilities and services in 3D printing and numerical simulation in California and Texas. Combined, these recent moves bolster the company’s ability to serve the growing region.

“Art has done a fantastic job supporting our Colorado customers and has been a significant contributor to our growth in the state,” said Ward Rand, co-founder and principal, PADT. “As a member of the PADT support team, he will continue to serve Colorado customers. Art’s move to New Mexico simply expands his impact on a region that has seen a significant acceleration of 3D printing adoption, making his extensive knowledge and talents a real asset there moving forward.”

Newcomer has been serving PADT’s 3D printing customers for five years, and has nearly 20 years of experience as a field service engineer across different technologies and sectors. In his role at PADT, he applied his talents to help customers install, maintain, and repair their Stratasys additive manufacturing systems across a wide variety of industries including aerospace, defense, medical, and industrial.

PADT’s growing customer base in New Mexico has expanded the application of proven Stratasys 3D printing technologies to include more tooling and end-part production. The National Labs in New Mexico were pioneers in the application of 3D Printing and PADT has been proud to work with them over the years as they increase their efforts and find new applications for the technology.

“I’m looking forward to taking on a new challenge in New Mexico where PADT has served for many years,” said Newcomer. “The growth of 3D printing investments in the region provides us with a great opportunity to use our hard-earned expertise to educate customers on how to best implement the technology and to keep their systems operating at peak performance”

To learn more about PADT’s services in New Mexico as well as its continued expansion throughout the Southwest, please visit www.padtinc.com.

About PADT

PADT is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 90 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Press Release: Stratasys Platinum Channel Partner PADT Expands 3D Printing System Sales Into Texas to Meet the Growing Demand for Prototyping and End-Use Products

Demand for 3D Printing Equipment and Services in Texas’ Key Technology Industries Including Aerospace, Electronics, and Medical Has Drastically Increased

As a Platinum Channel Partner with Stratasys, PADT is excited to announce that we are now able to offer these services in Texas. We have been working with this technology in Arizona, Colorado, New Mexico, and Utah for more than 15 years, and are eager to finally bring our expertise to customer in the great state of Texas. 
 


This expansion is reflective of PADT’s consistent growth and the increased demand for additive manufacturing systems across many of Texas’ largest technology industries. Today, the aerospace industry is using thousands of 3D printed parts on aircraft and even spacecraft.

With PADT’s knowledge and expertise, we are well-positioned to be a valuable partner to the growing tech community in Texas. 

Please find our official press release below, or here as a PDF or in HTML.


Stratasys Platinum Channel Partner PADT Expands 3D Printing System Sales Into Texas to Meet the Growing Demand for Prototyping and End-Use Products

Demand for 3D Printing Equipment and Services in Texas’ Key Technology Industries Including Aerospace, Electronics,
and Medical Has Drastically Increased

TEMPE, Ariz., August 12, 2020 PADT, a globally recognized provider of numerical simulation, product development, and 3D printing products and services, today announced its Stratasys sales territory is expanding to include Texas. PADT is a Stratasys Platinum Channel Partner that has sold additive manufacturing systems as a certified reseller in Arizona, Colorado, New Mexico, and Utah for more than 15 years. In 2018, PADT also expanded its presence to Austin, Texas as a reseller of Ansys simulation software.

“Additive manufacturing technology that was once exclusive to low-volume prototyping has evolved rapidly for both prototyping and end-use product development alongside innovation in Stratasys’ 3D production systems and printing materials,” said Ward Rand, co-founder and principal, PADT. “We’ve made deep investments in Texas and have many years of experience working with organizations in the state’s technology industry. We’re now eager to bring our outstanding support and expertise in 3D printing to Texas and build on our success with Stratasys and Ansys across the Southwest.”

The expansion is reflective of PADT’s consistent growth and the increased demand for additive manufacturing systems across many of Texas’ largest technology industries. Today, the aerospace industry is using thousands of 3D printed parts on aircraft and even spacecraft. In the medical industry, 3D printing is being used to prototype biological structures to improve surgery and enhance our knowledge of the human body. Stratasys has been a driving force behind this innovation and relies on industry experts like PADT to help organizations integrate the technology into their engineering and manufacturing processes.

“PADT has been an outstanding partner to Stratasys for nearly 20 years,” said Brent Noonan, Vice president of Channel Sales – Americas. “They were one of the first engineering firms in the country to embrace 3D printing for complex product design and development. As a result, they’ve built an impressive team with a wealth of knowledge and expertise as it relates to 3D printing use and integration across industry sectors. PADT is well-positioned to be a valuable partner to Texas’ growing technology community.”

For more information on PADT and its 3D printing offering, please visit www.padtinc.com.

About PADT

PADT is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 90 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #


 

All Things Ansys 066: Simulation Automation & Optimization management with Ansys optiSLang

 

Published on: June 29th, 2020
With: Eric Miller & Josh Stout
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s systems application & support engineer Josh Stout to look at the optimization tool optiSLang. This tool helps automate simulation and optimization activities across various solution areas, such as autonomy, electrification, digital twins, and more, as well as how it enables users to capitalize on the benefits of enterprise simulation management.

If you would like to learn more, you can view the product brochure here: https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/brochure/optislang-brochure.pdf.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

5 questions we ask before preparing a CFD consulting quote

This post was created based on the expert advice of PADT CFD engineer and Project Lead, Nathan Huber.

Simulating the behavior of liquids and gases has become a standard part of product development in products where fluid behavior plays an important role.  Here at PADT, we have been using Computational Fluid Dynamics, or CFD, for years to model everything from combustion in turbine engines to cooling of electronics, to golf balls. With that experience, our estimates for a given project have become reasonably accurate.

However, we can only estimate accurately if we have complete and accurate information on what you need simulated and what you hope to gain from the simulation. To help everyone arrive at more accurate cost and schedule estimates, even if you are planning a project internally, we offer the following list of five questions we always ask:

1: Have we signed a Non-Disclosure Agreement (NDA)?

Before we can do anything, we need to have an agreement in place that clearly defines how both sides handle proprietary information.  When we have tried holding meetings to gather information for a quote before an NDA is in place, we almost always waste time. There is just too much that is proprietary in most products.

2. What does your CAD Geometry look like?

We also need to know the physical geometry of your system.  That is why we ask for an accurate and complete CAD model.  We take some time to poke through the files in our software to make sure we can use the geometry, it is accurate, and it has the level of detail required for CFD. Basically, we check to see if we can pull a fluid domain from your CAD models. Remember, we are not simulating the solid part of your product; we are modeling the inverse and therefore need to pull a negative volume from your geometry.

3. What are the Boundary Conditions and Material Properties?

Now that the geometric domain is understood, we need to know what is inside that domain, and what is acting upon it.  We will ask you for boundary conditions, and for the material properties of the fluid or fluids you are asking us to model.  The complexity, time variation, and severity of the loads drive the difficulty of setting up and running the simulation. And the material properties can also impact the sophistication of the model as well as its robustness.  Both, therefore, have a significant impact on cost.

4. What results do you want to see?

When a simulation finishes, it can be post-processed to get a vast array of plots, figures, animations, pretty pictures, etc.  Those take time to create, so we need to know what you want to see. Also, we set up some post-processing parameters before we start the simulation.

5. What do you want to learn from your CFD Simulation?

The whole point of doing a CFD simulation is to study the behavior of your system. We need to know what behavior you need to understand so we can make sure that the simulation we propose answers your questions and guides you in your design process. 


We hope you find this review useful when you are planning your internal CFD project as well as those you outsource. And speaking of outsourcing, please consider PADT as your resources for any future simulation projects of any type, not just CFD.  Now, you already know what questions we will ask.

Panel Discussion: Fighting COVID-19 with 3D Printing

When the virus that causes COVID-19 started to spread around the world, supply chains started to fail. The made access to personal protective equipment, or PPE, even more difficult. That is when Additive Manufacturing stepped up and said: “We can help.”

PADT held a panel discussion with three customers and our partner, Stratasys, to hear how each of them met the challenges posed by COVID-19 and responded with 3D Printing. It was a fantastic discussion and well worth a listen.

Update on PADT and COVID-19

Dear Customers, Vendors, and Partners,

Here at PADT, we want to deal with the Coronavirus/COVID-19 situation in a timely and frank manner. We will ensure that the needs of our employees, customers, and suppliers are met to the best of our ability. We know that it is never too early to plan, and that how everyone in the supply chain reacts impacts every other participant in that network. 

The key to getting through this experience is frequent, open, and honest communication. We will make an effort to reach out to everyone in our ecosystem, but please do not hesitate to contact us with your concerns and needs.

The collective health and safety of everyone involved is our first priority.  We will also strive to continue to deliver the products and services you count on PADT to perform in the most effective and timely manner possible. The good news is that PADT is a technology-driven company with the established infrastructure already in place to keep consulting projects and transactions moving forward, provide critical support, and deliver your parts and products on time.

We have the following restrictions currently in place:

  1. Travel Restrictions
    PADT has stopped all travel until further notice.
  2. Face-to-Face Meetings
    In addition to travel, PADT has canceled all face-to-face meetings with non-employees.
  3. Events
    All PADT hosted or sponsored non-virtual events have been canceled.
  4. Field Service
    Provided at customer request. Please contact us to arrange.

We have replaced all travel and face-to-face interactions with virtual or phone meetings. Every employee is available via video conferencing, email, or over the phone.

In addition, the following measures will be put into place as needed:

  1. Work from Home
    PADT has an existing and proven infrastructure in place that enables employees to work from home.  It is secure and follows our established cybersecurity policies. If we feel the need to assignemployees to work from home, you will be able to contact them via email, and voice mails will be sent to them electronically. Every employee has access to Microsoft Teams and can also interact using your virtual meeting preferred tool. 
  2. Order Fulfillment
    There are currently no issues with order fulfilment
    We are working closely with our suppliers to identify any upstream supply chain disruptions as soon as possible.  We will quickly communicate any potential issues to all impacted parties.  

Please contact us immediately if you encounter any challenges or concerns. 

The key to getting through this situation with minimal disruption is focusing on the health and safety of everyone, adapting flexibly to an ever-changing situation, and communicating effectively. 

Press Release: 3D Printing Glossary Now Available from PADT Provides Most Comprehensive Online Resource for Additive Manufacturing Terminology

3DPrinting-Glossary.com Covers Everything from Machines and Materials to Pre- and Post-Processing Terms

After searching the internet for a resource you can’t find, have you ever sat at your desk and said to yourself “I wish someone would take the time to create this. I could really use it.” Here at PADT, we have been saying that for many years about the need for a comprehensive reference on the terms used in Additive Manufacturing. Then we realized that the only way to get it done was to roll up our sleeves and do it ourselves. And so we did.

The result is www.3DPrinting-Glossary.com

This free online resource contains over 250 terms with definitions for each one. We write each definition and reviewed it amongst our team of long term users of Additive Manufacturing. After over 25 years in the business, we should know the difference between direct laser melting and selective laser sintering. And even if we are off a little, it is a start and we encourage the community to send us corrections, recommendations, and especially new terms to add to this compendium.

The site is free for use, and the contents are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This allows anyone to use the content how they wish as long as they say where it came from and don’t make money directly off of it.

Check it out and let us know what you think. More details are below in the official Press Release, which you can also find in PDF and HTML.

And do not hesitate to contact PADT for any of your Additive Manufacturing, Product Development, or Simulation needs. The same expertise that went into creating this resource is applied to every project we work on and every product we sell.


3D Printing Glossary Now Available from PADT Provides Most Comprehensive Online Resource for Additive Manufacturing Terminology

3DPrinting-Glossary.com Covers Everything from Machines and Materials to Pre- and Post-Processing Terms

TEMPE, Ariz., March 3, 2020 PADT, a globally recognized provider of numerical simulation, product development, and 3D printing products and services, today announced the launch of the most comprehensive online Glossary of industry terms relevant to additive manufacturing. The new site, www.3dprinting-glossary.com, includes more than 250 definitions in nine different categories.

“In addition to being an outstanding partner to our customers, PADT strives to be a trusted advisor on all things additive manufacturing,” said Eric Miller, co-founder and principal, PADT. “Our goal for the glossary is to help educate the community on the evolving terminology in our industry and serve as a critical resource for students and professionals seeking 3D printing knowledge and clarification.”

The company has been a provider of additive manufacturing services since 1994. They are also a Stratasys Platinum Partner that has sold and supported Stratasys equipment in the Southwest for over fifteen years. Many of their employees are recognized and award-winning experts in the AM community.

The creation of PADT’s 3D Printing Glossary was the result of a companywide effort to gather and define the terms used in the industry daily. The user-friendly website allows visitors to search for terms directly or by category. PADT will continue to support and update the glossary as the industry grows and innovates.

The nine glossary categories include:

  • Additive Manufacturing Processes
  • Build Characteristics
  • General
  • Manufacturing Term
  • Material
  • Post-Processing
  • Pre-Processing
  • Product Definition
  • System Characteristic

Since founding PADT in 1994, the company’s leadership has made a great effort to become more than just a reseller or service provider.  They want to be a resource to the community. In addition to investing in entrepreneurs, serving on technology boards and committees, and speaking at industry events, PADT donates a great deal of money, time and resources to STEM-focused educational initiatives. The 3D Printing Glossary is another resource that PADT has created for the benefit of students as well as up and coming professionals in the engineering and manufacturing industry.

PADT is also asking the community to contribute to this effort If users notice a term is missing, disagree with the definition, or have more to add to the definition, they ask that readers email additions or changes to info@padtinc.com.

About PADT

PADT is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 90 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Media contact: Alec Robertson Brodeur Partners arobertson@brodeur.com 585-281-6399

Organization Contact:
Eric Miller
PADT, Inc.
eric.miller@padtinc.com
480-813-4884

Additive Manufacturing & Topology Optimization in ANSYS 2020 R1 – Webinar

ANSYS offers a complete simulation workflow for additive manufacturing (AM) that allows you to transition your R&D efforts for metal additive manufacturing into a successful manufacturing operation. This best-in-class solution for additive manufacturing enables simulation at every step in your AM process. It will help you optimize material configurations and machine and parts setup before you begin to print. As a result, you’ll greatly reduce — and potentially eliminate — the physical process of trial-and- error testing.

ANSYS additive solutions continue to evolve at a rapid pace. A variety of new enhancements and features come as part of ANSYS 2020 R1, including the ability to work with EOS printers, using the inherent strain approach in ANSYS Workbench Additive, and new materials in ANSYS Additive Print and Science.

Join PADT’s Lead Mechanical Engineer Doug Oatis for an exploration of the ANSYS tools that help to optimize additive manufacturing, and what new capabilities are available for them when upgrading to ANSYS 2020 R1. This presentation includes updates regarding:

  • Level-set topology optimization
  • Density based topology optimization
  • Inherent strain method in workbench Additive
  • Improved supports in Additive Prep
  • Additive Wizard update
  • And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

GrabCAD Print Software: Part One, an Introduction

Where are you on your New Year’s resolutions? They often include words such as “simplify,” “organize” and “streamline.” They can be timely reminders to rethink how you do things in both your personal and professional lives, so why not rethink the software you use in 3D Printing?

Preparing a CAD solid model or an STL file to print on a 3D printer requires using set-up software that is typically unique to each printer’s manufacturer. For Flashforge equipment, you use FlashPrint, for Makerbot systems you use MakerBot Print, for Formlabs printers you use PreForm, and so on.

GrabCAD Print software for setting up STL or CAD files to print on Stratasys 3D printers (main screen).
GrabCAD Print software for setting up STL or CAD files to print on Stratasys 3D printers (main screen). Image courtesy PADT.

For printers from industrial 3D printing company Stratasys, the go-to software is GrabCAD Print (along with GrabCAD Print Mobile), developed for setting up both fused deposition modeling (FDM) and PolyJet technologies in new and efficient ways. Often just called GrabCAD, this versatile software package lets you organize and control prints assigned to one of more than 30 printer models, so the steps you learn for one printer transfer directly over to working with other models.

If you’ve previously used Stratasys Catalyst (on Dimension and uPrint printers), you’ll find similarities with GrabCAD, as well as some enhanced functionality. If you’re accustomed to the fine details of Stratasys Insight, you’ll see that GrabCAD provides similar capabilities in a streamlined interface, plus powerful new features made possible only by the direct import of native CAD files.  Additionally, you can access Insight within GrabCAD, combining the best of both traditional and next-generation possibilities.

Simple by Default, Powerful by Choice

GrabCAD lets users select simplified default settings throughout, with more sophisticated options available at every turn. Here are the general steps for print-file preparation, done on your desktop, laptop or mobile device:

1 – Add Models: Click-and-drag files or open them from File Explorer. All standard CAD formats are supported, including SolidWorks, Autodesk, Siemens and PTC, as well as STL. You can also bring in assemblies of parts and multi-body models, choosing whether to print them assembled or not. (Later we’ll also talk about what you can do with a CAD file that you can’t do with an STL.)

2 – Select Printer: Choose from a drop-down menu to find whatever printer(s) is networked to your computer. You can also experiment using templates for printers you don’t yet own, in order to compare build volumes and print times.

3 – Orient/Rotate/Scale Model: Icons along the right panel guide you through placing your model or models on the build platform, letting you rotate them around each axis, choose a face to orient as desired, and scale the part up or down. You can also right-click to copy and paste multiple models, then edit each one separately, move them around, and delete them as desired.

4 – Tray Settings: This icon leads to the menu with choices such as available materials, slice height options, build style (normal or draft), and more; always targeted to the selected printer. These choices apply to all the parts on the tray or build sheet.

5 – Model Settings: Here’s where you choose infill style, infill density (via slider bar), infill angle, and body thickness (also known as shell thickness) per part. Each part can have different choices.

6 – Support Settings: These all have defaults, so you don’t even have to consider them if you don’t have special needs (but it’s where, for example, you would change the self-supporting angle).

7 – Show Slice Preview: Clicking this icon slices the model and gives you the choice to view layers/tool paths individually, watch a video animation, or even set a Z-height pause if you plan on changing filament color or adding embedded hardware.

8 – Print: You’re ready to hit the Print button, sending the prepared file to the printer’s queue.

Scheduling Your Print, and Tracking Print Progress

A clock-like icon on the left-side GrabCAD panel (the second one down, or third if you’ve activated Advanced FDM features) switches the view to the Scheduler. In this mode, you can see a day/time tracking bar for every printer on the network. All prints are queued in the order sent, and the visuals make it easy to see when one will finish and another start (assuming human intervention for machine set-up and part removal, of course).

Scheduling panel in GrabCAD Print, showing status of files printing on multiple 3D printers.
Scheduling panel in GrabCAD Print, showing status of files printing on multiple 3D printers. Image courtesy PADT.

If you click on the bar representing a part being built, a new panel slides in from the right with detailed information about material type, support type, start time, expected finish time and total material used (cubic inches or grams). For printers with an on-board camera, you can even get an updated snapshot of the part as it’s building in the chamber.

Below the Scheduler icon is the History button. This is a great tool for creating weekly, monthly or yearly reports of printer run-time and material consumption, again for each printer on the network. Within a given build, you’ll even see the files names of the individual parts within that job.

Separately, if you’re not operating the software offline (an option that some companies require), you can enable GrabCAD Print Reports. This function generates detailed graphs and summaries covering printer utilization and overall material use across multiple printers and time periods – very powerful information for groups that need to track efficiencies and expenditures.

And That’s Just the Beginning

Once you decide to experiment with these settings, you begin to see the power of GrabCAD Print for FDM systems. We haven’t even touched on the automated repairs for STL files, PolyJet’s possibilities for colors, transparency and blended materials, or the options for setting up a CAD model so that sub-sections print with different properties.

For example, you’ll see how planning ahead allows you to bring in a multi-body CAD model and have GrabCAD identify and reinforce some areas at full density, while changing the infill pattern, layout, and density in other regions. GrabCAD recognizes actual CAD bodies and faces, letting you make build-modifications that previously would have required layer-by-layer slice editing, or couldn’t have been done at all.

Stay tuned for our next blog post, GrabCAD Print Software, Part Two: Simplify Set-ups, Save Time, and Do Cool Stuff You Hadn’t Even Considered, and reach out to us to learn more about downloading and using GrabCAD Print.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Stratasys printers and materials, contact us at info@padtinc.com.

Books on Additive Manufacturing Make the Perfect Holiday Gift, of Course

It took a while for books about Additive Manufacturing to catch up with the industry; now there are at least several dozen from which to choose.
It took a while for books about Additive Manufacturing to catch up with the industry; now there are at least several dozen from which to choose.

Much as we all love and use websites, YouTube videos and blog posts (you’re reading this one, right?), there are still times when there’s nothing like a book, even if you read it on your phone or dedicated device. Books provide data, perspective and pointers to other resources, in a convenient, all-in-one format. You can dive deeply into a subject or get a fascinating overview of topics you may never have known were connected.

For the AM-lover on your holiday shopping list, consider one of the following titles:

3D Printing: Understanding Additive Manufacturing

by Andreas Gebhardt, Julia Kessler, Laura Thurn | Dec. 2018

3D Printing and Additive Manufacturing: Principles and Applications – Fifth Edition of Rapid Prototyping

by Chee Kai Chua and Kah Fai Leong | Nov. 2016

The 3D Printing Handbook: Technologies, design and applications

by Ben Redwood , Filemon Schöffer , et al. | Nov. 2017

Additive Manufacturing (Second Edition)

by Amit Bandyopadhyay (editor) and Susmita Bose (editor) | Oct. 2019

Additive Manufacturing: Applications and Innovations (Manufacturing Design and Technology)

by Rupinder Singh and J. Paulo Davim | Aug. 2018

Additive Manufacturing Change Management: Best Practices (Continuous Improvement Series)

by David M. Dietrich, Michael Kenworthy, Elizabeth A. Cudney | Feb. 2019

Additive Manufacturing: Design, Methods, and Processes

by Steinar Westhrin Killi | Aug. 2017

Additive Manufacturing for the Aerospace Industry

by Francis H. Froes Ph.D. (editor), Rodney Boyer (editor) | Feb. 2019

Additive Manufacturing: Materials, Processes, Quantifications and Applications

by Jing Zhang and Yeon-Gil Jung | May 2018

Additive Manufacturing of Emerging Materials

by Bandar AlMangour (editor) | Aug. 2018

Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry (Springer Series in Materials Science)

by John O. Milewski | July 2017

Additive Manufacturing of Metals: The Technology, Materials, Design and Production (Springer Series in Advanced Manufacturing)

by Li Yang, Keng Hsu, Brian Baughman, Donald Godfrey, Francisco Medina (Author), Mamballykalathil Menon, Soeren Wiener | May 2017

Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (2015 Edition)

by Ian Gibson (Author), David Rosen (Author), Brent Stucker (Author) | Nov. 2014

NOTE: this was the first book written about the field that I could find, with its first edition in 2009. (If you know of one pre-2009, I’d be interested to hear about it.) SME uses this book as the reference guide for its Certification exams for AM Fundamentals and AM Technicians.

Design for Additive Manufacturing: Tools and Optimization (Additive Manufacturing Materials and Technologies)

By Martin Leary | Nov. 2019

Design for Additive Manufacturing: Guidelines for cost effective manufacturing

by Tom Page | Jan. 2012

Design, Representations, and Processing for Additive Manufacturing (Synthesis Lectures on Visual Computing: Computer Graphics, Animation, Computational Photography, and Imaging)

by Marco Attene, Marco Livesu, et al. | June 2018

Laser-Based Additive Manufacturing of Metal Parts: Modeling, Optimization, and Control of Mechanical Properties (Advanced and Additive Manufacturing Series)

by Linkan Bian (editor), Nima Shamsaei (editor), John Usher (editor) | Aug. 2017

Laser Additive Manufacturing: Materials, Design, Technologies, and Applications (Woodhead Publishing Series in Electronic and Optical Materials Book 88)

by Milan Brandt (editor) | Sept. 2016

Laser Additive Manufacturing of High-Performance Materials

by Dongdong Gu | Apr. 2015

The Management of Additive Manufacturing: Enhancing Business Value (Springer Series in Advanced Manufacturing 2018)

by Mojtaba Khorram Niaki, Fabio Nonino | Dec. 2017

Thermo-Mechanical Modeling of Additive Manufacturing

by Michael Gouge and Pan Michaleris | Sept. 2017

Other books definitely exist that have more of a hobbyist focus. This list comes from my own research and opinions and is not intended to slight any other titles. I’d be interested in expanding the list if you know of other titles with an industrial AM slant.

Happy Holiday reading!

Press Release: NASA Awards PADT, Arizona State University and Kennesaw State University a $755,000 Phase II STTR Research Grant

The Grant Will Fund Research for Combining Cellular Patterns Inspired by Nature with Simulation and 3D Printing to Make Stronger and Lighter Structures for Space Exploration

What do we like more here at PADT than combining simulation, design, and 3D Printing? Combining those three things for spaceflight applications.

That is what our 16th STTR/SBIR win is all about. Based upon our success with the shorter, first phase of this project, NASA has awarded PADT, ASU, and KSU the second phase of this R&D Project.

The team will work to take bio-inspired lattice shapes and develop tools to incorporate those shapes into the design of structure used in spacecraft. We will also create tools to optimize the distribution of the lattice structure, produce material properties, and verify the simulation results with rigorous testing.

Read more details in the press release below or here.

Also, watch this space for reports on what we learn and information about the tools we will be creating.

If you have the need to do simulation, design, or additive manufacturing, or combine any of those disciplines to create better products or improve your processes, please contact PADT and let’s talk about how we can help.


NASA Awards PADT, Arizona State University and Kennesaw State University a $755,000 Phase II STTR Research Grant

The Grant Will Fund Research for Combining Cellular Patterns Inspired by Nature with Simulation and 3D Printing to Make Stronger and Lighter Structures for Space Exploration

TEMPE, Ariz., December 10, 2019 ─ In a move that acknowledges its excellence and expertise in 3D printing, simulation, design and software development, PADT today announced NASA has awarded a $755,000 2019 Phase II Small Business Technology Transfer (STTR) research grant for it to collaborate with Arizona State University (ASU) and Kennesaw State University (KSU) to enable the development of stronger and lighter structures for space exploration. The objective of the joint effort is to develop a software tool for designing, virtually testing and optimizing strong, lightweight lattice structures for aerospace vehicles. The result of the research project will be a commercial software product that PADT plans to market.

The Phase II STTR grant is a continuation of the original $127,000 Phase I grant awarded to PADT and ASU’s Ira A. Fulton Schools of Engineering in August 2018. This is PADT’s 16th STTR/SBIR grant since the company was founded in 1994.

“We’re proud to win this Phase II STTR because it furthers our coordination with the Fulton Schools and requires the use of our three main areas of expertise: 3D printing, simulation and product development,” said Alex Grishin, Ph.D., consulting engineer, PADT. “As an Elite ANSYS channel partner, we also have the skillset needed to embed our solution in the ANSYS simulation tool, saving a lot of time and effort. Improving aerospace innovation is always an exciting prospect, and our team is uniquely qualified to apply our expertise to develop disruptive technology for NASA.”

Shapes found in nature, like honeycombs in a beehive, are intriguing to the aerospace community because of their strength and light weight. Additionally, the shape and spacing of these lattice structures do not have to be uniform, and by varying them, the compositions can provide better performance. The challenge PADT, ASU and KSU is solving is how to develop a design tool that combines concepts from density, topology and parameter optimization to generate lattice materials that are aperiodic in nature and do not require a priori definition of cell size. Recent advancements in additive manufacturing will create the geometry specified by the tool and manufacture “bio-inspired” structures with detail to a degree previously not possible.

“ASU has become a leader in the advancement of additive manufacturing and we are continually discovering new ways to solve engineering challenges with this technology,” said Kyle Squires, Ph.D., dean, Fulton Schools of Engineering, Arizona State University. “The NASA Phase II STTR grant allows us to use simulation and 3D printing to explore bio-inspired structures to innovate how NASA designs and manufactures its spacecrafts.”

In addition to the software product, the group’s deliverables include cellular material data for inclusion in NASA’s open-source PeTaL platform, data analysis, experimental results, and 3D printed metal demonstration artifacts. The lattice structure design tool itself may allow NASA to design and manufacture high-performance materials, including:

  • Heat shields
  • Acoustic liners
  • Space debris resistant skins
  • Lightweight panels
  • Conformal, structural heat exchangers

“This research project is a great example of government, academic institutions and the private sector working together to provide practical solutions for the space industry,” said Ji Mi Choi, associate vice president, Entrepreneurship and Innovation, Arizona State University. “We appreciate the opportunity to work with NASA, PADT and KSU as we discover new ways to apply 3D printing and simulation to real-world challenges.”

To learn more about PADT and its advanced capabilities, please visit www.padtinc.com.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

About Ira A. Fulton Schools of Engineering

The Ira A. Fulton Schools of Engineering at Arizona State University, with more than 24,000 enrolled students, is one of the largest engineering schools in the United States, offering 44 graduate and 25 undergraduate degree programs across six schools of academic focus. With students, faculty and researchers representing all 50 states and 135 countries, the Fulton Schools of Engineering is creating an inclusive environment for engineering excellence by advancing research and innovation at scale, revolutionizing engineering education and expanding global outreach and partner engagement. The Fulton Schools of Engineering’s research expenditures totaled $115 million for the 2017-2018 academic year. Learn more about the Ira A. Fulton Schools of Engineering at engineering.asu.edu

# # #

Press Release: Arizona Corporate Excellence Awards Lists PADT as one of the Top Private Companies in the State

Globally Recognized Company Selected as an ACE Recipient for its Impressive Growth and for Numerous Contributions to the Arizona Technology Sector

For the third time this year, PADT was officially recognized for our contribution to the local tech ecosystem: An Arizona Corporate Excellence award. Last night we joined companies of every type at the Scottsdale Center for the Performing arts to be listed with fifty other privately held companies headquartered here in Arizona. As with many of these awards, it is hard to grasp what an honor it is to be recognized until you hear the names of the other honorees.

You can find a list of all of those who were recognized for the 2019 ACE Award here. Our press release on this topic is below and here.

This was the first time we were nominated for an ACE award, and we ranked 46th amongst private companies in the state. Next year… let’s see how high up that list we can move.

Recognition of this type, and by the broader business community instead of our insular tech world, was a great way to wind down our celebrations for PADT’s 25th year in business.


Arizona Corporate Excellence Awards Lists PADT as one of the Top Private Companies in the State

Globally Recognized Company Selected as an ACE Recipient for its Impressive Growth and for Numerous Contributions to the Arizona Technology Sector

TEMPE, Ariz., November 19, 2019 PADT, a globally recognized provider of numerical simulation, product development, and 3D printing products and services, today announced it has been named to the Arizona Corporate Excellence (ACE) Awards list of the Top Private and Fastest Growing Companies.

PADT joined a prestigious group of companies at the awards ceremony hosted by the Scottsdale Center for Performing Arts on November 14, 2019. Fellow winners included Arizona Coyotes, JDA Software, OnTrac, SiteLock, StandardAero, and WebPT. 

“Since we started PADT in the Valley in 1994, our goal has been to become the premier innovation partner to technology companies who create physical products,” said Ward Rand, co-founder and principal, PADT. “We’re honored to be named an ACE recipient alongside this impressive list of winners, many of which have been, or are, our clients. It’s a testament to how far we have come since we were four engineers in a tiny executive suite.”

PADT has experienced tremendous growth over the past five years. Included below is a list of key accomplishments the company has achieved since 2015:

  • Opened offices in Torrance, California and Austin, Texas – with a new office location coming soon.
  • Further developed partnerships with universities throughout the Southwest and helped to launch significant additive manufacturing labs at Arizona State University and Metro State University in Denver, Colorado.
  • Tripled 3D printing capacity with new, large format stereolithography systems, and launched the first 3D printing factory in the Southwest using Carbon’s digital light synthesis system.
  • Awarded multiple SBIR/STTR grants, bringing the company’s total to 15.
  • The company and its leadership received two additional awards in 2019 – PADT received a special recognition for its contributions to the biotech community by AZBio and Eric Miller was honored as one of the state’s top tech executive by the Phoenix Business Journal.

The ACE awards are the premier business awards event in the Valley, and the only program highlighting the market’s biggest and best privately held companies. In its 24th year, the goal of the ACE Awards is to  develop an increasing sense of knowledge sharing and community among private companies.

For more information on PADT’s services, leadership and the company’s history, please visit www.padtinc.com/about.

About PADT

PADT is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 90 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Join PADT in Welcoming Jeff Wells, Business Development Manager, Engineering Services

Here at PADT, we pride ourselves on our ability to make our customers’ ideas for innovation practical and get them to market. No matter how complex the challenge is, we have the engineering expertise and technology tools to work with our customers and deliver tailored solutions to meet their needs. And for every solution we create, there’s a business development team leading the partnership with our customers. We’re excited to welcome the newest leader of this team who introduced the free invoice template, Business Development Manager for Engineering Services, Jeff Wells.

“PADT’s engineering services are thriving behind the work of our outstanding team,” said Eric Miller, co-founder and principal, PADT. “Jeff adds a tremendous amount of experience as both an engineer and a business development leader. His knowledge of the industry and the community will elevate our ability to attract new and innovative customers.”

To help PADT improve its market position in engineering services and product development, Wells will be responsible for building new customer relationships and seeking new opportunities to solve complex challenges. His focus will be on serving customers in a wide variety of industries, including aerospace and defense, medical, and industrial.

“Throughout my many years in engineering here in Arizona, I’ve been keenly aware of the outstanding services provided by PADT,” said Wells. “The company’s reputation and the wonderful people I’ve gotten to know over the years made it an easy decision to join the team. I look forward to contributing to the company’s strategy for growing its engineering services department.”

Jeff and his Family in New Zealand

Wells brings nearly 30 years of engineering, business development, and sales experience to the position. He joins PADT after spending the past five years in the director of business development role at CollabraTech Solutions. Wells joined CollabraTech early in the company’s lifecycle and helped grow the gas and chemical delivery product company from a few million dollars in revenue to over $14 million, by diversifying their customer base, the markets they served and the projects they pursued.

Early in his career, Wells worked as an engineer designing a wide variety of products from parts for Airbus aircraft engines to laser part marking kiosks and semiconductor capital equipment. He quickly realized his propensity for combining his engineering expertise with his communication skills, and in the late ‘90s, he began his career in business development. Wells worked at Advanced Integration Technologies for 10 years as a business development engineer and business development manager. He later worked closely with senior leadership on business development operations at Ultra Clean Technology and led business development for Foresight Processing.

Wells holds a Bachelor of Science in Aerospace Engineering from Arizona State University (ASU). He and his wife, Kate Wells, CEO of the Phoenix Children’s Museum, have been married for 27 years and have two daughters who attend school at Massachusetts Institute of Technology and Barrett, the Honors College at ASU. In their free time, Wells and his family enjoy traveling. A decade ago, Jeff and his wife took their two daughters out of school for 14 months backpacking around the globe, visiting 22 countries. Wells also enjoys being outdoors hiking, playing sports, snowboarding and water skiing.

You can find a writeup in the Phoenix Business Journal here and his LinkedIn profile is here.

To learn more about PADT’s engineering service capabilities and to connect with Jeff Wells, please visit www.padtinc.com/services  or call us at 1-800-293-7238.

New Awards and Fantastic Winners: 2019 Governor’s Celebration of Innovation does not Disappoint

Way back in 2011, PADT participated in our first Governor’s Celebration of Innovation, or GCOI. We actually won the award for being a Pioneer that year, and we also started making custom awards with our 3D Printing systems. And every year we get to see friends, customers, and partners take a PADT original home. 2019 was no different.

You can read about the event in the Phoenix Business Journal here.

This year FreeFall Aerospace was won the Innovation Award for startups. They are part of the ANSYS Startup program and someone we really enjoy working with. In addition, Qwick won the Judges award. They are a local software startup that we have interacted with through our mentoring and angel investing activities.

This year’s awards came out nice, combining PolyJet and Stereolithography to make a kinetic sculpture:

We were pleased to watch these being handed out to eight winners. The Tucson winners, half of those recognized, were happy to show their’s off: