3D printed bolts produced on the Stratasys Origin One printer.

Exploring the new Stratasys Origin One Printer – Such Smooth Parts!

Recently I had the chance to start printing parts on PADT’s new Stratasys Origin One 3D printer, and now I can’t get enough of it. It creates parts by curing a shallow tray of liquid resin, a full layer at a time, based on DLP (digital light processing) technology. That means, whether you print just one part or as many as can fit on the build-platform, the print-time is the same. If you’re accustomed to filament-based printing, this system is FAST, and the resulting surface finish rivals that of injection-molded parts.

Completed build of 24 threaded bolt “sleeves” printed on a Stratasys Origin One P3 printer. (Image courtesy PADT Inc.)

The Origin One’s DLP process is termed Programmable PhotoPolymerization (P3, for short, because of course we need another acronym in this field). The photocurable resins it uses are single-component materials, which simplifies the build process compared to those that require two-part epoxies: there’s no waste since parts can print overnight, and each open resin vat can stay open for a week.

In addition, unused resin can be strained and returned to the bottle, easily lasting a month, while unopened resins display a six-month-to-one-year shelf-life. And what a range of resins and applications! The Origin One system is open; several material companies (Henkel Loctite, Covestro Somos and BASF) have already worked with the printer’s developers, matching the hardware’s operation with the best build-prep parameters for their formulas.

All P3 resins are tuned to 385 nanometers. The combination of this wavelength, shorter than that of other DLP and LCD systems, along with a 4K light engine, supports feature sizes as small as 50 microns and strong molecular cross-linking for exceptional material properties. Printing across a build platform that is 7.5 inches by 4.25 inches, the typical build layer is 100 microns, and the proprietary pneumatic release mechanism (key to great adhesion plus speed) easily supports layer print-times of 15 seconds. The build volume height is 14.5 inches, which can accommodate a decently large number of parts; you may have seen how Origin helped develop and print thousands of certified nasal-swabs in the first months of the COVID pandemic (approximately 1500 swabs every eight hours).

PADT Inc.’s Origin One DLP 3D printer, with a completed build. Parts print upside down and need only a shallow tray of resin, as the DLP system projects an image of each layer from below through a glass cover and the clear membrane mounted at the tray’s lower edge. (Image courtesy PADT Inc.)

Print Setup

Print set-up in Autodesk netfabb software, ready to print on the Origin One printer. These parts built directly on the build-platform and did not require any support structure. (Image courtesy PADT Inc.)

If you already have Autodesk netfabb Premium software, you’ve got what you need to prepare an STL part file for printing; if not, the Origin One printer comes with the first-year free of netfabb, or you can use other file preparation software such as Materialise Magics. Depending on the part geometry, you may place the parts directly on the build platform (as with typical DLP printers, the parts print upside-down), or you can choose to add supports of many styles; these will be snipped off during post-processing.


Bolts printed in BASF ST45 on the Origin One printer, ready to be popped off the build plate with a putty knife or razor blade. Post-processing is quick and easy with IPA and a small UV oven. (Image courtesy PADT Inc.)

This is fast, too! I found I could complete the post-processing workflow in 30 minutes to an hour, and of that only about 20 minutes was hands-on time. Here are the recommended steps:

  1. Swish the build-platform with the parts still on it, in a tub of IPA, for about 5 seconds.
  2. Slide the parts off with a putty knife, or just pop them off with gloved hands.
  3. Rinse the parts in agitated IPA for five to ten minutes. (We use an automated shaker-table unit, but sonicator units are also an option.)
  4. Air-dry the parts with compressed air.
  5. Cure the parts in a UV oven for anywhere from 30 seconds to 20 minutes or so, depending on the material, geometry and oven power.
  6. Done!

Geometry Design Capabilities

The feature size that can be achieved with this system is pretty impressive:

– As small as 0.5mm diameter cylinder (8mm tall),

– As small as 0.2mm diameter horizontal through-holes, and

– Up to a 3mm unsupported 90-degree overhang.

Inner section of two-part 3D printed “bolt” which will be mated with its reverse-threaded outer sleeve. These parts also printed directly on the build-plate of the Origin One printer. (Image courtesy PADT Inc.)

Material categories

So far, Stratasys has qualified the set-up parameters for 12 resins, some of which are available in more than one color or in clear. These materials offer options for the following use cases.

  • Heat-resistant
  • Tough
  • General purpose
  • Elastomers
  • Medical

The parts I printed in these photos were done in BASF Ultracur3D ST 45 Black; that material is considered a general-purpose resin but I find it also tough and smooth – so smooth that we were able to print a threaded bolt with a reverse-threaded sleeve that unscrews to display fine lettering both raised and indented (shout-out to PADT’s new 3D Printing Application Engineer @ChaseWallace for the design). The ease-of-motion when assembling both parts is terrific.

Components of the two-part bolt, plus final assembly, printed on the Origin One printer. (Images courtesy PADT Inc.)

In the first week of November, I’ll be headed to Stratasys headquarters for official hands-on training with the Origin One printer and a variety of materials. I can’t wait to print more parts that push the limits of surface finish, minimal support structures and end-use-part durability.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing/3D Scanning products and services. For more information on Stratasys printers and materials, contact us at info@padtinc.com.

Mini Mechanica clock section of 3D printed Tourbillon Clock at PADT

Three Dimensions of Time: A new, 3D Printed Clock Highlighting PADT’s Additive Capabilities

Tracking time has challenged the human race for centuries, resulting in some of the finest mechanisms ever crafted. From sundials and hourglasses to pocket watches and atomic clocks, we have marked the passage of time with ever-increasing precision. Along the way, we became supremely skilled at creating the requisite gears and springs, as well as the machines to produce them. (If you have a deeper interest in measuring time, one must-read book is Longitude by Dava Sobel.)

This post, however, is about taking clock-making to a new dimension – three dimensions, in fact, using multiple 3D printers to generate not only the gears and structural components but even the watch-spring and winding-key, based on a mechanism called a Tourbillon. Invented around 1800 by Abraham-Louis Breguet, the Tourbillon concept compensates for the effects of gravity on delicate watch-springs when the watch is carried or laid down (varying its orientations), by employing multiple axes.

A traditionally made Tourbillon watch mechanism (watchgecko.com)

An excellent write-up on this concept is on MyMiniFactory, which is also where you’ll find the fascinating design of a 3D-printable Tourbillon clock from a designer called Mechanistic. Check out this mesmerizing video of the clock in action. Mechanistic has previously done other awesome designs and this past Spring did a crowd-funding effort to support printing all the components on a hobby-type 3D printer.

Depending on one’s donation amount, some or all of the intricate clock’s CAD files are downloadable. Recently Justin Baxter, PADT’s senior 3D Printing Service Engineer (with years of hobbyist clock-making under his belt), set out to reproduce the device with a twist. Why not take advantage of all the additive manufacturing systems in use by PADT’s Manufacturing Division, and print at least one component on each?

This approach spans the AM technologies of Fused Deposition Modeling (Stratasys FDM material extrusion), PolyJet (Stratasys material deposition), selective laser sintering (3D Systems SLS polymer powder bed fusion), direct metal laser sintering (EOS DMLS metal powder bed fusion), stereolithography (3D Systems and UnionTech vat SLA photopolymerization) and digital light processing (Stratasys Origin One DLP vat photopolymerization).

The Triple-Axis Tourbillon Mechanical Clock Design

Not all of the clock’s 230 components are 3D printed – metal screws, pins and ball bearings round out the assembly – but Justin is slowly printing all other parts spread across colors, materials and AM technologies. For starters, he has recreated the central first-axis mechanism called the Mini Mechanica; this subset serves well for new users to test out their own systems and parameters ensuring effective dimensional tolerances. The Mini Mechanica part files are also available as a separate free download.

First section of the Mechanist design of a 3D printed, three-axis Tourbillon mechanical clock, printed at PADT based on the downloaded files from MyMiniFactory. (Image courtesy PADT)

Justin’s Mini Mechanica includes the following parts made of ABS (acrylonitrile-butadiene-styrene), each 3D printed on one of our two Stratasys F370 FDM systems:

Part Name
01_Bottom Base

When finished, here is how that subset will fit into the completed three-axis clock:

Three-axis Tourbillon clock designed for 3D printing by Mechanistic, with part files available by donation on MyMiniFactory (www.myminifactory.com) (MyMiniFactory)

Note: the fully printed clock operates on a 90 minute run-time if a steel spring is employed, and 20 minute run time with a 3D printed (FDM) version. (We’ve seen suggestions for adding a battery.)

For more details on the Triple Axis clock, see the conveniently provided assembly guide: (2) How to build a 3D Printed Triple Axis Tourbillon | Assembly Guide – YouTube.

As the part-builds progress across our other printers and materials, we’ll post an update. Here are a few more components in progress, including the decorative base on the left, which was printed in Nylon 12GS on our SLS powder-bed printer.

In-progress parts 3D printed for the Mechanica Tri-Axis Tourbillon Clock currently being reproduced at PADT. The decorative base at the left was printed in Nylon 12GS on our SLS system; the parts for the MiniMechanica (assembled at the top) and the remaining black and grey parts were printed in ABS and ASA on our Stratasys F370 FDM systems. (Image courtesy PADT Inc.)

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Stratasys polymer printers and materials and EOS metal printers, contact us at info@padtinc.com.

FDM printed part with surface texture added in SolidWorks 2020.

Printing 3D Texture on FDM 3D Printed Parts – it can be done!

While many examples exist of impressive texturing done on 3D printed Stratasys PolyJet printed parts (some wild examples are here), I have to admit it took me a while to learn that true texturing can also be added to Stratasys Fused Deposition Modeling (FDM) parts. This blog post will walk you through adding texture to all faces or some faces of a solid model, ready for FDM printing. You, too, may be surprised by the results.

I know that complex texturing is possible in a graphics sense with such software packages as Rhino, PhotoShop, Blender and more, but I’m going to show you what you can achieve simply by working with SolidWorks, from Rev. 2019 onwards, as an easy starting point. From there, you can follow the same basic steps but import your own texture files.

Example of Stratasys FDM part set up to print with a checkerboard surface texture. (Image courtesy PADT Inc.)
Example of Stratasys FDM part set up to print with a checkerboard surface texture. (Image courtesy PADT Inc.)

SolidWorks Texture Options

First off, let’s clarify some terms. Texture mapping has existed for years and strictly speaking creates a 2D “texture” or pattern. If I were to wrap that imagery around a 3D CAD model and print it on, say, a PolyJet multi-color 3D printer, I’d get a 3D part with a flat or perhaps curved surface decorated with a multi-color “picture” such as a map or a photo of leather. It could conform, but it’s still basically a decal.

A 3D texture instead is more properly referred to as Bump Mapping (not to be confused with …..too late….bit mapping). Bump mapping interprets the color/contrast information of a 2D image such that it renders light and shadow to give the illusion of a 3D part, while remaining in 2D. Taking this concept one step further, 3D CAD software such as SolidWorks can apply rules that convert white, black and grey shades into physical displacements, producing a kind of tessellated topology mapping. This new information can be saved as an STL file and generate a 3D printed part that has physical, tactile variations in material height across its surface. (For a detailed explanation and examples of texture versus bump-mapping, see the GrabCAD Tutorial “Adding Texture to 3D Models.”)

For FDM parts, you’ll get physical changes on the outer surface of the part that appear as your choice of say, a checkerboard, an arrangement of stars, a pebbly look or a series of waves. In the CAD software, you have a number of options for editing that bump map to produce bigger or smaller, higher or lower, finer or coarser variations of the original pattern, prior to saving the model file as an STL file.

Stepping through SolidWorks 3D Texturing

The key to making this option work in SolidWorks 3D CAD software (I’m using SolidWorks 2020), is in the Appearances tab. Here are the steps I’ve taken, highlighting the variety of choices you can make. My example is the Post-It Note holder I described in my PADT blog post about advanced infill options in GrabCAD Print.

  1. Open Post-It note CAD file, select Solid Bodies (left menu) and select Appearances (in the right toolbar).
A screenshot of a video game

Description automatically generated
  1. Expand Appearances and go all the way down to Miscellaneous, then click to open the 3D Textures folder.
A screenshot of a cell phone

Description automatically generated
  1. Scroll down to choose one of the more than 50 (currently) available patterns. Here, I’ve chosen a 5-pointed star pattern.
A screenshot of a computer

Description automatically generated
  1. I dragged and dropped that pattern onto the part body. A window opens up with several choices: the default is to apply the pattern to all faces:
A screenshot of a computer

Description automatically generated

However, you can mouse over within that pop-window to select only a single face, like this:

A screenshot of a computer

Description automatically generated
  1. When you’ve applied the pattern to either all faces or just one or two, you’ll see a new entry in the left window, Appearances, with the subheading: 5-pointed Star. Right-click on those words, and choose Edit Appearance:
A screenshot of a computer

Description automatically generated

Then the Appearances window expands as follows, opening by default to the Color/Image tab:

A screenshot of a computer

Description automatically generated

In this pane, if desired, you could even Browse to switch to a different pattern you have imported in a separate file.

  1. Click on Mapping, and you’ll see a number of “thumb wheel” sliders for resizing the pattern either via the wheel, clicking the up/down arrows, or just entering a value.

Mapping: this moves the pattern – you can see it march left or right, up or down. I used it to center the stars so there aren’t any half-stars cut off at the edge.

A screenshot of a computer

Description automatically generated

Size/Orientation: You can also try “Fit width to selection” or “Fit height to selection,” or experiment with height and width yourself, and even tilt the pattern at an angle. (If you don’t like the results, click on Reset Scale.) Here, I’ve worked with it to have two rows of five stars.

  1. Remember I said that you can also make the pattern higher or lower, like a change in elevation, so that it stands out a little or a lot. To make those choices, go to the Solid Bodies line in the Feature Manager tree, expand it, and click on the part name (mine is Champfer2).

In the fly-out window that appears, click on the third icon in the top row, “3D Texture.” This opens up an expanded window where you can refine the number of triangular facets that make up the shape of the selected texture pattern. In case you are working with more than one face and/or different patterns on each face, you would check the box under Texture Settings for each face when you want to edit it.

A screenshot of a computer

Description automatically generated

Here is where you can flip the pattern to extend outwards, or be recessed inwards, or, if you brought in a black/white 2D pattern in the first place, you can use this to convert it to a true 3D texture.

I’ll show you some variations of offset distance, refinement and element size, with exaggerated results, so you can see some of the possible effects:

A screenshot of a social media post

Description automatically generated

In this first example, the only change I made from the default was to increase the Texture Offset Distance from 0.010 to 0.200. The stars are extending out quite visibly.

Next, I changed Texture Refinement from 0% to 66.7%, and now you can see the stars more distinctly, with better defined edges:

A screenshot of a computer

Description automatically generated

Finally, I am going to change the Element size from 0.128 to 0.180in. It made the star edges only slightly sharper, though at the expense of increasing the number of facets from about 24,000 to 26,000; for large parts and highly detailed texturing, the increased file size could slow down slicing time.

  1. To make sure these textured areas print, you have to do one more special step: Convert to Mesh Body. Do this in the Feature Manager by right-clicking on the body, and selecting the second icon in the top row, “Convert to Mesh Body.” You can adjust some of these parameters, too, but I accepted the defaults.
A screenshot of a computer

Description automatically generated
  1. Lastly, Save the file in STL format, as usual.

At my company, PADT, my favorite FDM printer is our F370, so I’m going to set this up in GrabCAD Print software, to print there in ABS, at 0.005in layers:

A screenshot of a computer

Description automatically generated

You can definitely see the stars popping out on the front face; too bad you can also see two weird spikes part-way up, that are small bits of a partial row of stars. That means I should have split the face before I applied the texture, so that the upper portion was left plain. Well, next time.

Here’s the finished part, with its little spikes:

A picture containing table, sitting

Description automatically generated

And here’s another example I did when I was first trying out a checkerboard pattern; I applied the texture to all faces, so it came out a bit interesting with the checkerboard on the top and bottom, too. Again, next time, I would be more selective to split up the model.

A picture containing table, sitting, wooden, luggage

Description automatically generated

NOTE: It’s clear that texturing works much better on vertical faces than horizontal, due to the nature of the FDM layering process – just be sure to orient your parts to allow for this.

For More Information on Texturing

SolidWorks offers a number of tutorials on the texturing set-up process, such as http://help.solidworks.com/2019/english/solidworks/sldworks/c_3d_textures.htm, and Shuvom Ghose at GrabCAD gives even more details about what to expect with this process in his post https://grabcad.com/tutorials/how-to-3d-texture-your-parts-for-fdm-printing-using-solidworks-2019

There will also be a general Stratasys webinar on The Benefits of 3D Printing Physical Textures on July 29 at 9am PT.

Commercial aircraft companies are already adding a pebble texture to flight-approved cosmetic FDM parts, such as covers for brackets and switches that keep them from being bumped. If you try this out, let us know what texture you chose and send us a photo of your part.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services, and is an authorized reseller of Stratasys products. For more information on Stratasys printers and materials, contact us at info@padtinc.com.

Books on Additive Manufacturing Make the Perfect Holiday Gift, of Course

It took a while for books about Additive Manufacturing to catch up with the industry; now there are at least several dozen from which to choose.
It took a while for books about Additive Manufacturing to catch up with the industry; now there are at least several dozen from which to choose.

Much as we all love and use websites, YouTube videos and blog posts (you’re reading this one, right?), there are still times when there’s nothing like a book, even if you read it on your phone or dedicated device. Books provide data, perspective and pointers to other resources, in a convenient, all-in-one format. You can dive deeply into a subject or get a fascinating overview of topics you may never have known were connected.

For the AM-lover on your holiday shopping list, consider one of the following titles:

3D Printing: Understanding Additive Manufacturing

by Andreas Gebhardt, Julia Kessler, Laura Thurn | Dec. 2018

3D Printing and Additive Manufacturing: Principles and Applications – Fifth Edition of Rapid Prototyping

by Chee Kai Chua and Kah Fai Leong | Nov. 2016

The 3D Printing Handbook: Technologies, design and applications

by Ben Redwood , Filemon Schöffer , et al. | Nov. 2017

Additive Manufacturing (Second Edition)

by Amit Bandyopadhyay (editor) and Susmita Bose (editor) | Oct. 2019

Additive Manufacturing: Applications and Innovations (Manufacturing Design and Technology)

by Rupinder Singh and J. Paulo Davim | Aug. 2018

Additive Manufacturing Change Management: Best Practices (Continuous Improvement Series)

by David M. Dietrich, Michael Kenworthy, Elizabeth A. Cudney | Feb. 2019

Additive Manufacturing: Design, Methods, and Processes

by Steinar Westhrin Killi | Aug. 2017

Additive Manufacturing for the Aerospace Industry

by Francis H. Froes Ph.D. (editor), Rodney Boyer (editor) | Feb. 2019

Additive Manufacturing: Materials, Processes, Quantifications and Applications

by Jing Zhang and Yeon-Gil Jung | May 2018

Additive Manufacturing of Emerging Materials

by Bandar AlMangour (editor) | Aug. 2018

Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry (Springer Series in Materials Science)

by John O. Milewski | July 2017

Additive Manufacturing of Metals: The Technology, Materials, Design and Production (Springer Series in Advanced Manufacturing)

by Li Yang, Keng Hsu, Brian Baughman, Donald Godfrey, Francisco Medina (Author), Mamballykalathil Menon, Soeren Wiener | May 2017

Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (2015 Edition)

by Ian Gibson (Author), David Rosen (Author), Brent Stucker (Author) | Nov. 2014

NOTE: this was the first book written about the field that I could find, with its first edition in 2009. (If you know of one pre-2009, I’d be interested to hear about it.) SME uses this book as the reference guide for its Certification exams for AM Fundamentals and AM Technicians.

Design for Additive Manufacturing: Tools and Optimization (Additive Manufacturing Materials and Technologies)

By Martin Leary | Nov. 2019

Design for Additive Manufacturing: Guidelines for cost effective manufacturing

by Tom Page | Jan. 2012

Design, Representations, and Processing for Additive Manufacturing (Synthesis Lectures on Visual Computing: Computer Graphics, Animation, Computational Photography, and Imaging)

by Marco Attene, Marco Livesu, et al. | June 2018

Laser-Based Additive Manufacturing of Metal Parts: Modeling, Optimization, and Control of Mechanical Properties (Advanced and Additive Manufacturing Series)

by Linkan Bian (editor), Nima Shamsaei (editor), John Usher (editor) | Aug. 2017

Laser Additive Manufacturing: Materials, Design, Technologies, and Applications (Woodhead Publishing Series in Electronic and Optical Materials Book 88)

by Milan Brandt (editor) | Sept. 2016

Laser Additive Manufacturing of High-Performance Materials

by Dongdong Gu | Apr. 2015

The Management of Additive Manufacturing: Enhancing Business Value (Springer Series in Advanced Manufacturing 2018)

by Mojtaba Khorram Niaki, Fabio Nonino | Dec. 2017

Thermo-Mechanical Modeling of Additive Manufacturing

by Michael Gouge and Pan Michaleris | Sept. 2017

Other books definitely exist that have more of a hobbyist focus. This list comes from my own research and opinions and is not intended to slight any other titles. I’d be interested in expanding the list if you know of other titles with an industrial AM slant.

Happy Holiday reading!