Press Release: Stratasys Platinum Channel Partner PADT Expands 3D Printing System Sales Into Texas to Meet the Growing Demand for Prototyping and End-Use Products

Demand for 3D Printing Equipment and Services in Texas’ Key Technology Industries Including Aerospace, Electronics, and Medical Has Drastically Increased

As a Platinum Channel Partner with Stratasys, PADT is excited to announce that we are now able to offer these services in Texas. We have been working with this technology in Arizona, Colorado, New Mexico, and Utah for more than 15 years, and are eager to finally bring our expertise to customer in the great state of Texas. 
 


This expansion is reflective of PADT’s consistent growth and the increased demand for additive manufacturing systems across many of Texas’ largest technology industries. Today, the aerospace industry is using thousands of 3D printed parts on aircraft and even spacecraft.

With PADT’s knowledge and expertise, we are well-positioned to be a valuable partner to the growing tech community in Texas. 

Please find our official press release below, or here as a PDF or in HTML.


Stratasys Platinum Channel Partner PADT Expands 3D Printing System Sales Into Texas to Meet the Growing Demand for Prototyping and End-Use Products

Demand for 3D Printing Equipment and Services in Texas’ Key Technology Industries Including Aerospace, Electronics,
and Medical Has Drastically Increased

TEMPE, Ariz., August 12, 2020 PADT, a globally recognized provider of numerical simulation, product development, and 3D printing products and services, today announced its Stratasys sales territory is expanding to include Texas. PADT is a Stratasys Platinum Channel Partner that has sold additive manufacturing systems as a certified reseller in Arizona, Colorado, New Mexico, and Utah for more than 15 years. In 2018, PADT also expanded its presence to Austin, Texas as a reseller of Ansys simulation software.

“Additive manufacturing technology that was once exclusive to low-volume prototyping has evolved rapidly for both prototyping and end-use product development alongside innovation in Stratasys’ 3D production systems and printing materials,” said Ward Rand, co-founder and principal, PADT. “We’ve made deep investments in Texas and have many years of experience working with organizations in the state’s technology industry. We’re now eager to bring our outstanding support and expertise in 3D printing to Texas and build on our success with Stratasys and Ansys across the Southwest.”

The expansion is reflective of PADT’s consistent growth and the increased demand for additive manufacturing systems across many of Texas’ largest technology industries. Today, the aerospace industry is using thousands of 3D printed parts on aircraft and even spacecraft. In the medical industry, 3D printing is being used to prototype biological structures to improve surgery and enhance our knowledge of the human body. Stratasys has been a driving force behind this innovation and relies on industry experts like PADT to help organizations integrate the technology into their engineering and manufacturing processes.

“PADT has been an outstanding partner to Stratasys for nearly 20 years,” said Brent Noonan, Vice president of Channel Sales – Americas. “They were one of the first engineering firms in the country to embrace 3D printing for complex product design and development. As a result, they’ve built an impressive team with a wealth of knowledge and expertise as it relates to 3D printing use and integration across industry sectors. PADT is well-positioned to be a valuable partner to Texas’ growing technology community.”

For more information on PADT and its 3D printing offering, please visit www.padtinc.com.

About PADT

PADT is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 90 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #


 

From visualization to simulation: Digital Anatomy Solutions for 3D Printing – Webinar

The Stratasys J750 Digital Anatomy printer truly brings the look and feel of medical models to life with unrivaled accuracy, realism and functionality. Whether used for surgeon training or to perform testing during device development, its models provide unmatched clinical versatility mimicking both the appearance and response of human tissue.

Bring medical models to life. The J750 Digital Anatomy Printer takes the J750 capabilities to the next level. Step up to the printer’s digital capabilities to create models with an incredible array of microstructures which not only look, but now feel and function like actual human tissue for true haptic feedback. All of this in a single print operation with minimal to no finishing steps like painting, sanding or assembly.

Join PADT’s 3D Printing & Support Application Engineer Pam Waterman for a discussion on the value of this innovative new technology, including:

– How it solves challenges facing medical device companies and hospitals

– More realistic, functional, and anatomically accurate modeling capabilities

– Quicker design and development, leading to reduced time-to-market

– And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Top Ten Additive Manufacturing Terms to Know

The world of additive manufacturing, or 3D printing, is constantly evolving. The technology was invented less than 35 years ago yet has come a long way. What began as a unique, though limited, way to develop low-end prototypes, has exploded into a critical component of the product development and manufacturing process with the ability to produce end-use parts for critical applications in markets such as industrial and aerospace and defense.

To help our customers and the larger technology community stay abreast of the changing world of additive manufacturing, we launched a glossary of the most important terms in the industry that you can bookmark here for easy access. To make it easier to digest, we’re also starting a blog series outlining ten terms to know in different sub-categories.

For our first post in the series, here are the top ten terms for Additive Manufacturing Processes that our experts think everyone should know:

Binder Jetting

Any additive manufacturing process that uses a binder to chemically bond powder where the binder is placed on the top layer of powder through small jets, usually using inkjet technology. One of the seven standard categories defined by ASTM International (www.ASTM.org) for additive manufacturing processes.

Digital Light Synthesis (DLS)

A type of vat photopolymerization additive manufacturing process where a projector under a transparent build plate shines ultraviolet light onto the build layer, which is against the transparent build plate. The part is then pulled upward so that a new layer of liquid fills between the build plate and the part, and the process is repeated. Digital light synthesis is a continuous build process that does not create distinct layers.

Direct Laser Melting (DLM) or Direct Metal Laser Sintering (DMLS)

A type of powder bed fusion additive manufacturing process where a laser beam is used to melt powder material. The beam is directed across the top layer of powder. The liquid material solidifies to create the desired part. A new layer of powder is placed on top, and the process is repeated. Also called laser powder bed fusion, metal powder bed fusion, or direct metal laser sintering.

Directed Energy Deposition (DED)

An additive manufacturing process where metal powder is jetted, or wire is extruded from a CNC controlled three or five-axis nozzle. The solid material is then melted by an energy source, usually a laser or electron beam, such that the liquid metal deposits onto the previous layers (or build plate) and then cools to a solid. One of the ASTM defined standard categories for additive manufacturing processes.

Fused Deposition Modeling (FDM)

A type of material extrusion additive manufacturing process where a continuous filament of thermoplastic material is fed into a heated extruder and deposited on the current build layer. It is the trademarked name used for systems manufactured by the process inventor, Stratasys. Fused filament fabrication is the generic term.

Laser Powder Bed Fusion (L-PBF)

A type of powder bed fusion additive manufacturing process where a laser is used to melt material on the top layer of a powder bed. Also called metal powder bed fusion or direct laser melting. Most often used to melt metal powder but is used with plastics as with selective laser sintering.

Laser Engineered Net Shaping (LENS)

A type of direct energy deposition additive manufacturing process where a powder is directed into a high-energy laser beam and melted before it is deposited on the build layer. Also called laser powder forming.

Material Jetting

Any additive manufacturing process where build or support material is jetted through multiple small nozzles whose position is computer controlled to lay down material to create a layer. One of the ASTM defined standard categories for additive manufacturing processes.

Stereolithography Apparatus (SLA)

A type of vat photopolymerization additive manufacturing where a laser is used to draw a path on the current layer, converting the liquid polymer into a solid. Stereolithography was the first commercially available additive manufacturing process.

Vat Polymerization

A class of additive manufacturing processes that utilizes the hardening of a photopolymer with ultraviolet light. A vat of liquid is filled with liquid photopolymer resin, and ultraviolet light is either traced on the build surface or projected on it. Stereolithography is the most common form of vat photopolymerization. The build layer can be on the top of the vat of liquid or the bottom. One of the ASTM defined standard categories for additive manufacturing processes.

We hope this new blog series will help to firm up your knowledge of the ever-evolving world of additive manufacturing. For a list of all of the key terms and definitions in the additive manufacturing world, please visit our new glossary page at https://www.3dprinting-glossary.com/. The glossary allows you to search by terms or download a PDF of the glossary in its entirety to use as a reference guide.

We also know that there are a ton of experts in our community with knowledge to share. If you notice a term missing from our glossary or an inaccurate/incomplete description, please visit the suggestions page at https://www.3dprinting-glossary.com/suggest-a-correction-clarification-or-new-term/ and drop us a note.

Subscribe to the PADT blog or check back soon for the next installment in our series of “Top Ten Terms to Know in Additive Manufacturing.” We also welcome your feedback or questions. Just drop us a line at here.

Combining Simulation with Additive Manufacturing to Optimize Product Design – Webinar

Advatech Pacific, a Phoenix-based aerospace and defense contractor founded in 1995, works to change the way engineering is conducted for the better by incorporating innovative technologies into its customer’s workflow. Based on the success of previous projects, Advatech is a strong proponent of using high-end simulation software such as Ansys to identify and evaluate the fine details of massive multi-body mechanical systems, whether through simple static analyses or tightly-coupled multiphysics computations.

Implementing additive manufacturing as an additional way to improve system design presented opportunities to cut back on tooling costs and reduce lead time for several candidate turbine-engine parts. Doing so would also alleviate the challenge of reproducing complex castings, a problem made increasingly difficult by the fact that many of the original casting providers are no longer in business.

Join PADT’s Lead Mechanical Engineer Doug Oatis, and Advatech Pacific’s Engineering Manager Matt Humrick for a discussion on Ansys tools with regards to additive manufacturing & topology optimization, and how Advatech Pacific was able to use them to drastically improve the efficiency of their design and manufacturing process.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Five Ways to Save Time and Money in Your Product Development Process Using the Stratasys J55

Is your current prototyping process costing you more time and money than it should?

Bring higher quality modeling in-house at your team’s elbow, and straight into the design process. Using traditional production methods is costing your product development teams time and money.

Quality model shops have a long queue and large price tag, traditional modeling by hand is laborious and time consuming, and outsourcing comes with a laundry list of communication headaches, IP theft concerns, and extra costs.


Ready to learn more?


Make communication easier, improve design quality, and reduce time to market.

Click the link below to download the solution guide and discover five ways the Stratasys J55 can help you save time and money during the product development process. 

Download Here

Introducing the Stratasys J55 3D Printer – Possibilities at Every Turn

From perfecting products to applying concepts learned in the classroom, Stratasys can help you realize any number of design ideas. The new J55 introduces a rotating print platform for outstanding surface finish and printing quality, and features multimaterial capabilities and material configurations for both industrial and mechanical design.

The Stratasys J55 3D Printer is a huge leap forward for accessible, full color 3D printing and allows designers to have multiple iterations of a prototype ready and at their fingertips throughout every phase of the design process.

Enhanced 3D printing capabilities include – static print head, rotating build tray, UV LED illumination technology, new material cartridge design, and more. The full reliability and quality of PolyJet technology created for an office or studio environment, at an affordable price.

Designed for consistent, stable performance, the J55 requires zero mechanical calibrations and features a “ready-to-print” mode, so you can make ideas a reality without interruption.

Click the link below to download the product brochure and learn how this innovative new machine is revolutionizing the world of additive manufacturing. 

All Things Ansys 062: Optimizing Materials Selection for Additive Manufacturing with Ansys Granta

 

Published on: May 4th, 2020
With: Eric Miller, Pam Waterman & Robert McCathren
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Pam Waterman and Robert McCathren for a discussion on how Ansys Granta can be used to help optimize hardware selection for additive manufacturing. The Senvol Database details 1,000 AM machines and more than 850 compatible materials. Using this tool within Granta Selector, you can search and compare materials based on properties, type, or compatible machines.

If you would like to learn more about the Ansys tool and it’s applications for additive, check out our webinar on the topic here: https://bit.ly/2SAZN8G

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things Ansys 058: Combining Mechanical Simulation with Additive Manufacturing

 

Published on: March 9th, 2020
With: Eric Miller, Matt Humrick & Pam Waterman
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by 3D Printing Applications Engineer Pamela Waterman and Advatech Pacific’s Engineering Manager Matt Humrick for a discussion on real world applications for topology optimization, and it’s value when it comes to creating parts though additive manufacturing.

If you would like to learn more about this topic and what Advatech Pacific is doing, you can download our case study covering these topics here: https://bit.ly/38Bqu2b

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Press Release: 3D Printing Glossary Now Available from PADT Provides Most Comprehensive Online Resource for Additive Manufacturing Terminology

3DPrinting-Glossary.com Covers Everything from Machines and Materials to Pre- and Post-Processing Terms

After searching the internet for a resource you can’t find, have you ever sat at your desk and said to yourself “I wish someone would take the time to create this. I could really use it.” Here at PADT, we have been saying that for many years about the need for a comprehensive reference on the terms used in Additive Manufacturing. Then we realized that the only way to get it done was to roll up our sleeves and do it ourselves. And so we did.

The result is www.3DPrinting-Glossary.com

This free online resource contains over 250 terms with definitions for each one. We write each definition and reviewed it amongst our team of long term users of Additive Manufacturing. After over 25 years in the business, we should know the difference between direct laser melting and selective laser sintering. And even if we are off a little, it is a start and we encourage the community to send us corrections, recommendations, and especially new terms to add to this compendium.

The site is free for use, and the contents are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This allows anyone to use the content how they wish as long as they say where it came from and don’t make money directly off of it.

Check it out and let us know what you think. More details are below in the official Press Release, which you can also find in PDF and HTML.

And do not hesitate to contact PADT for any of your Additive Manufacturing, Product Development, or Simulation needs. The same expertise that went into creating this resource is applied to every project we work on and every product we sell.


3D Printing Glossary Now Available from PADT Provides Most Comprehensive Online Resource for Additive Manufacturing Terminology

3DPrinting-Glossary.com Covers Everything from Machines and Materials to Pre- and Post-Processing Terms

TEMPE, Ariz., March 3, 2020 PADT, a globally recognized provider of numerical simulation, product development, and 3D printing products and services, today announced the launch of the most comprehensive online Glossary of industry terms relevant to additive manufacturing. The new site, www.3dprinting-glossary.com, includes more than 250 definitions in nine different categories.

“In addition to being an outstanding partner to our customers, PADT strives to be a trusted advisor on all things additive manufacturing,” said Eric Miller, co-founder and principal, PADT. “Our goal for the glossary is to help educate the community on the evolving terminology in our industry and serve as a critical resource for students and professionals seeking 3D printing knowledge and clarification.”

The company has been a provider of additive manufacturing services since 1994. They are also a Stratasys Platinum Partner that has sold and supported Stratasys equipment in the Southwest for over fifteen years. Many of their employees are recognized and award-winning experts in the AM community.

The creation of PADT’s 3D Printing Glossary was the result of a companywide effort to gather and define the terms used in the industry daily. The user-friendly website allows visitors to search for terms directly or by category. PADT will continue to support and update the glossary as the industry grows and innovates.

The nine glossary categories include:

  • Additive Manufacturing Processes
  • Build Characteristics
  • General
  • Manufacturing Term
  • Material
  • Post-Processing
  • Pre-Processing
  • Product Definition
  • System Characteristic

Since founding PADT in 1994, the company’s leadership has made a great effort to become more than just a reseller or service provider.  They want to be a resource to the community. In addition to investing in entrepreneurs, serving on technology boards and committees, and speaking at industry events, PADT donates a great deal of money, time and resources to STEM-focused educational initiatives. The 3D Printing Glossary is another resource that PADT has created for the benefit of students as well as up and coming professionals in the engineering and manufacturing industry.

PADT is also asking the community to contribute to this effort If users notice a term is missing, disagree with the definition, or have more to add to the definition, they ask that readers email additions or changes to info@padtinc.com.

About PADT

PADT is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 90 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Media contact: Alec Robertson Brodeur Partners arobertson@brodeur.com 585-281-6399

Organization Contact:
Eric Miller
PADT, Inc.
eric.miller@padtinc.com
480-813-4884

All Things ANSYS 057: Simulation for Additive Manufacturing in ANSYS 2020 R1

 

Published on: February 24th, 2020
With: Eric Miller & Doug Oatis
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Lead Mechanical Engineer Doug Oatis for a discussion on the latest advancements in simulation for additive manufacturing and topology optimization in ANSYS 2020 R1.

If you would like to learn more about what this release is capable of, check out our webinar on the topic here:

https://www.brighttalk.com/webcast/15747/384528

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Additive Manufacturing & Topology Optimization in ANSYS 2020 R1 – Webinar

ANSYS offers a complete simulation workflow for additive manufacturing (AM) that allows you to transition your R&D efforts for metal additive manufacturing into a successful manufacturing operation. This best-in-class solution for additive manufacturing enables simulation at every step in your AM process. It will help you optimize material configurations and machine and parts setup before you begin to print. As a result, you’ll greatly reduce — and potentially eliminate — the physical process of trial-and- error testing.

ANSYS additive solutions continue to evolve at a rapid pace. A variety of new enhancements and features come as part of ANSYS 2020 R1, including the ability to work with EOS printers, using the inherent strain approach in ANSYS Workbench Additive, and new materials in ANSYS Additive Print and Science.

Join PADT’s Lead Mechanical Engineer Doug Oatis for an exploration of the ANSYS tools that help to optimize additive manufacturing, and what new capabilities are available for them when upgrading to ANSYS 2020 R1. This presentation includes updates regarding:

  • Level-set topology optimization
  • Density based topology optimization
  • Inherent strain method in workbench Additive
  • Improved supports in Additive Prep
  • Additive Wizard update
  • And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Introducing the Stratasys J826 – Full-color, multi-material printing for the enterprise design world

Taking risks attempting to capture design intent at the end of the process requires a lot of post-processing (coloring, assemblies, a mix of technologies, etc.) – when its too time consuming, expensive and late to make changes or correct errors. Stratasys PolyJet 3D printing technology is developed to elevate designs by realizing ideas more quickly and more accurately and taking color copies to the next level.

By putting realistic models in a designer’s hands earlier in the process, companies can promote better decisions and a superior final product. Now, with the Stratasys J8 Series, the same is true for prototypes. This tried and tested technology simplifies the entire design process, streamlining workflows so you can spend more time on what matters –creating, refining, and designing the best product possible.

PADT is excited to introduce the new Stratasys J826 3D printer 

Based on J850 technology, the J826 supplies the same end-to-end solution for the design process and ultra-realistic simulation at a lower price point.
Better communicate design intent and drive more confident results with prototypes that realistically portray an array of design alternatives.

The Stratasys J826 3D Printer is able to deliver realism, shorter time to market, and streamlined application thanks to a variety of unique attributes that set it apart from most other Polyjet printers:

  • High Quality – The J826 can accurately print smaller features at a layer thickness of 14µm to 27µm. As part of the J8 series of printers it is also capable of printing in ultra-realistic Pantone validated colors.
  • Speed & Productivity – Three printing speed modes (high speed, high quality & high mix) allows the J826 to always operate at the most efficient speed for each print. It can also avoid unnecessary down-time associate with material changeovers thanks to it’s built-in material cabinet and workstation.
  • Easy to Use – A smooth workflow with the J826 comes from simple integration with the CAD format of your choice, as well as a removable tray for easy clean up, and automated support creation and removal.

Are you ready to learn how the new Stratasys J826 provides the same quality and accuracy as other J8 series printers at a lower cost?

Provide the requested information via the form linked below and one of PADT’s additive experts will reach out to share more on what makes this new offering so exciting for the enterprise design world.

Start a Conversation

All Things ANSYS 053: 2019 Wrap-up & Predictions for ANSYS in the New Year

 

Published on: December 20th, 2019
With: Eric Miller, Tom Chadwick, Ted Harris, Sina Ghods & Ahmed Fayad
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Simulation Support Team, including Tom Chadwick, Ted Harris, Sina Ghods, and Ahmed Fayad for a round-table discussion of their favorite ANSYS features released in 2019, along with predictions on what has yet to come.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Books on Additive Manufacturing Make the Perfect Holiday Gift, of Course

It took a while for books about Additive Manufacturing to catch up with the industry; now there are at least several dozen from which to choose.
It took a while for books about Additive Manufacturing to catch up with the industry; now there are at least several dozen from which to choose.

Much as we all love and use websites, YouTube videos and blog posts (you’re reading this one, right?), there are still times when there’s nothing like a book, even if you read it on your phone or dedicated device. Books provide data, perspective and pointers to other resources, in a convenient, all-in-one format. You can dive deeply into a subject or get a fascinating overview of topics you may never have known were connected.

For the AM-lover on your holiday shopping list, consider one of the following titles:

3D Printing: Understanding Additive Manufacturing

by Andreas Gebhardt, Julia Kessler, Laura Thurn | Dec. 2018

3D Printing and Additive Manufacturing: Principles and Applications – Fifth Edition of Rapid Prototyping

by Chee Kai Chua and Kah Fai Leong | Nov. 2016

The 3D Printing Handbook: Technologies, design and applications

by Ben Redwood , Filemon Schöffer , et al. | Nov. 2017

Additive Manufacturing (Second Edition)

by Amit Bandyopadhyay (editor) and Susmita Bose (editor) | Oct. 2019

Additive Manufacturing: Applications and Innovations (Manufacturing Design and Technology)

by Rupinder Singh and J. Paulo Davim | Aug. 2018

Additive Manufacturing Change Management: Best Practices (Continuous Improvement Series)

by David M. Dietrich, Michael Kenworthy, Elizabeth A. Cudney | Feb. 2019

Additive Manufacturing: Design, Methods, and Processes

by Steinar Westhrin Killi | Aug. 2017

Additive Manufacturing for the Aerospace Industry

by Francis H. Froes Ph.D. (editor), Rodney Boyer (editor) | Feb. 2019

Additive Manufacturing: Materials, Processes, Quantifications and Applications

by Jing Zhang and Yeon-Gil Jung | May 2018

Additive Manufacturing of Emerging Materials

by Bandar AlMangour (editor) | Aug. 2018

Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry (Springer Series in Materials Science)

by John O. Milewski | July 2017

Additive Manufacturing of Metals: The Technology, Materials, Design and Production (Springer Series in Advanced Manufacturing)

by Li Yang, Keng Hsu, Brian Baughman, Donald Godfrey, Francisco Medina (Author), Mamballykalathil Menon, Soeren Wiener | May 2017

Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (2015 Edition)

by Ian Gibson (Author), David Rosen (Author), Brent Stucker (Author) | Nov. 2014

NOTE: this was the first book written about the field that I could find, with its first edition in 2009. (If you know of one pre-2009, I’d be interested to hear about it.) SME uses this book as the reference guide for its Certification exams for AM Fundamentals and AM Technicians.

Design for Additive Manufacturing: Tools and Optimization (Additive Manufacturing Materials and Technologies)

By Martin Leary | Nov. 2019

Design for Additive Manufacturing: Guidelines for cost effective manufacturing

by Tom Page | Jan. 2012

Design, Representations, and Processing for Additive Manufacturing (Synthesis Lectures on Visual Computing: Computer Graphics, Animation, Computational Photography, and Imaging)

by Marco Attene, Marco Livesu, et al. | June 2018

Laser-Based Additive Manufacturing of Metal Parts: Modeling, Optimization, and Control of Mechanical Properties (Advanced and Additive Manufacturing Series)

by Linkan Bian (editor), Nima Shamsaei (editor), John Usher (editor) | Aug. 2017

Laser Additive Manufacturing: Materials, Design, Technologies, and Applications (Woodhead Publishing Series in Electronic and Optical Materials Book 88)

by Milan Brandt (editor) | Sept. 2016

Laser Additive Manufacturing of High-Performance Materials

by Dongdong Gu | Apr. 2015

The Management of Additive Manufacturing: Enhancing Business Value (Springer Series in Advanced Manufacturing 2018)

by Mojtaba Khorram Niaki, Fabio Nonino | Dec. 2017

Thermo-Mechanical Modeling of Additive Manufacturing

by Michael Gouge and Pan Michaleris | Sept. 2017

Other books definitely exist that have more of a hobbyist focus. This list comes from my own research and opinions and is not intended to slight any other titles. I’d be interested in expanding the list if you know of other titles with an industrial AM slant.

Happy Holiday reading!

All Things ANSYS 048: Topology Optimization & Simulation for Additive Manufacturing in ANSYS 2019 R3

 

Published on: October 7th, 2019
With: Eric Miller & Doug Oatis
Description:  

In this episode, your host and Co-Founder of PADT, Eric Miller is joined by PADT’s simulation support & application engineer Doug Oatis for a discussion on what is new in ANSYS 2019 R3 with regards to tools and applications for topology optimization and additive manufacturing.

If you would like to learn more about what’s new in this latest release, check out our webinar on the topic here: https://www.brighttalk.com/webcast/15747/372133?

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS