Additive & Structural Optimization Updates in Ansys 2021 R2 – Webinar

Minimize risk and ensure high-quality, certifiable additive manufacturing parts with Ansys’ comprehensive and scalable software solution. Create and optimize designs for topology, lattice optimizations and more.

Ansys Additive Solutions, a comprehensive and scalable software solution, allows you to minimize risk and ensure high quality, certifiable parts. Dive deeper into the properties of your printer parts, ensure traceability of your data, optimize build files and more.

Join PADT’s Lead Mechanical Engineer and additive expert Doug Oatis for an in depth look at what’s new in the latest version of Ansys Additive.

This release Additive Solutions enhances speed and workflows for users. Users will experience a significant improvements in accuracy across the Additive Solution products.

Update highlights include: 

  • Faster solve times & improved user workflows

  • Increased accuracy & numerical consistency owing to changes to meshing defaults and improved robustness

  • Speed improvements in additive microstructure simulations​​​​​​

  • ​​​​And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things Ansys 099: The Future of Ansys on the Cloud

 

Published on: October 18th, 2021
With: Eric Miller & Wim Slagter
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Director of Strategic Partnerships at Ansys Wim Slagter to discuss the latest advancements in the software’s HPC capabilities, and how users can make the most out of cloud computing.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things Ansys 097: Fluids Updates in Ansys 2021 R2

 

Published on: September 20th, 2021
With: Eric Miller & Sina Ghods
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Senior Application Engineer and fluids expert Sina Ghods for a look at what’s new for fluid simulation in Ansys 2021 R2.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things Ansys 096: IT Tips & Tricks for Ansys Support

 

Published on: September 7th, 2021
With: Eric Miller & Ahmed Fayad
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s IT Software Support Engineer, Ahmed Fayad to discuss common support questions he frequently receives, along with best practices for avoiding issues and finding solutions within Ansys simulation software.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Welcome to a New Era in Electronics Reliability Simulation

Simulation itself is no longer a new concept in engineering, but individual fields, applications, and physics are continually improved upon and integrated into the toolbox that is an engineer’s arsenal. Many times, these are incremental additions to a particular solver’s capabilities or a more specialized method of post processing, however this can also occasionally be present through new cross-connections between separate tools or even an entirely new piece of software. As a result of all this, Ansys has now reached critical mass for its solution space surrounding Electronics Reliability. That is, we can essentially approach an electronics reliability problem from any major physics perspective that we like.

So, what is Electronics Reliability and what physics am I referring to? Great question, and I’m glad you asked – I’d like to run through some examples of each physics and their typical use-case / importance, as well as where Ansys fits in. Of course, real life is a convoluted Multiphysics problem in most cases, so having the capability to accommodate and link many different physics together is also an important piece of this puzzle.

Running down the list, we should perhaps start with the most obvious category given the name – Electrical Reliability. In a broad sense, this encompasses all things related to electromagnetic fields as they pertain to transmission of both power and signals. While the electrical side of this topic is not typically in my wheelhouse, it is relatively straightforward to understand the basics around a couple key concepts, Power Integrity and Signal Integrity.

Power integrity, as its name suggests, is the idea that we need to maintain certain standards of quality for the electrical power in a device/board/system. While some kinds of electronics are robust enough that they will continue to function even under large variations in supplied voltage or current, there are also many that rely on extremely regular power supplies that only vary above certain limits or within narrow bounds. Even if we’re looking at a single PCB (as in the image below), in today’s technological environment it will no doubt have electrical traces mapped all throughout it as well as multiple devices present that operate under their own specified electrical conditions.

Figure 1: An example PCB with complex trace and via layouts, courtesy of Ansys

If we were determined to do so, we could certainly measure trace lengths, widths, thicknesses, etc., and make some educated guesses for the resulting voltage drops to individual components. However, considerably more effort would need to be made to account for bends, corners, or variable widths, and that would still completely neglect any environmental effects or potential interactions between traces. It is much better to be able to represent and solve for the entire geometry at once using a dedicated field solver – this is where Ansys SIwave or Ansys HFSS typically come in, giving us the flexibility to accurately determine the electrical reliability, whether we’re talking about AC or DC power sources.

Signal integrity is very much related, except that “signals” in this context often involve different pathways, less energy, and a different set of regulations and tolerances. Common applications involve Chip-signal modeling and DDRx virtual compliance – these have to do with not only the previous general concerns regarding stability and reliability, but also adherence to specific standards (JEDEC) through virtual compliance tests. After all, inductive electromagnetic effects can still occur over nonconductive gaps, and this can be a significant source of noise and instability in cases where conductive paths (like board traces or external connections) cross or run very near each other.

Figure 2: Example use-cases in virtual compliance testing, courtesy of Ansys

Whether we are looking at timings between components, transition times, jitter, or even just noise, HFSS and SIWave can both play roles here. In either case, being able to use a simulation environment to confirm that a certain design will or will not meet certain standards can provide invaluable feedback to the design process.

Other relevant topics to Electrical Reliability may include Electromagnetic Interference (EMI) analysis, antenna performance, and Electrostatic Discharge (ESD) analysis. While I will not expand on these in great detail here, I think it is enough to realize that an excellent electrical design (such as for an antenna) requires some awareness of the operational environment. For instance, we might want to ensure that our chosen or designed component will adequately function while in the presence of some radiation environment, or maybe we would like to test the effectiveness of the environmental shielding on a region of our board. Maybe, there is some concern about the propagation of an ESD through a PCB, and we would like to see how vulnerable certain components are. Ansys tools provide us the capabilities needed to do all of this.

The second area of primary interest is Thermal Reliability, as just about anyone who has worked with or even used electronics knows, they generate some amount of heat while in use. Of course, the quantity, density, and distribution of that heat can vary tremendously depending on the exact device or system under question, but this heat will ultimately result in a rise in temperature somewhere. The point of thermal reliability basically boils down to realizing that the performance and function of many electrical components depends on their temperature. Whether it is simply a matter of accounting for a change in electrical conductivity as temperature rises or a hard limit of functionality for a particular transistor at 150 °C, acknowledging and accounting for these thermal effects is critical when considering electronics reliability. This is a problem with several potential solutions depending on the scale of interest, but generally we cover the package/chip, board, and full system levels. For the component/chip level, a designer will often want to provide some package level specs for OEMs so that a component can be properly scoped in a larger design. Ansys Icepak has toolkits available to help with this process; whether it is simplifying a 3D package down to a detailed network thermal model or identifying the most critical hot spot within a package based on a particular heat distribution. Typically, network models are generated through temperature measurements taken from a sample in a standardized JEDEC test chamber, but Icepak can assist through automatically generating these test environments, as below, and then using simulation results to extract well defined JB and JC values for the package under test.

Figure 3: Automatically generated JEDEC test chambers created by Ansys Icepak, courtesy of Ansys

On the PCB level of detail, we are likely interested in how heat moves across the entire board from component to component or out to the environment. Ansys Icepak lets us read in a detailed ECAD description for said PCB and process its trace and via definitions into an accurate thermal conductivity map that will improve our simulation accuracy. After all, two boards with identical sizing and different copper trace layouts may conduct heat very differently from each other.

Figure 4: Converting ECAD information into thermal conductivity maps using Ansys Icepak, courtesy of Ansys

On the system level of thermal reliability, we are likely looking at the effectiveness of a particular cooling solution on our electronic design. Icepak makes it easy to include the effects of a heat exchanger (like a coldplate) without having to explicitly model its computationally expensive geometry by using a flow network model. Also, many of today’s electronics are expected to constantly run right up against their limit and are kept within thermal spec by using software to throttle their input power in conjunction with an existing cooling strategy. We can use Icepak to implement and test these dynamic thermal management algorithms so that we can track and evaluate their performance across a range of environmental conditions.

The next topic that we should consider is that of Mechanical Reliability. Mechanical concepts tend to be a little more intuitive and relatable due to their more hands-on nature than the other two, though the exact details behind the cause and significance of stresses in materials is of course more involved. In the most general sense, stress is a result of applying force to an object. If this stress is high compared to what is allowed by a material, then bad things tend to happen – like permanent deformation or fracture. For electronic devices consisting of many materials, small structures, and particularly delicate components, we have once again surpassed what can be reasonably accomplished with hand calculations. Whether we are looking at an individual package, the integrity of an entire PCB, or the stability that a rigid housing will provide to a set of PCBs, Ansys has a solution. We might use Ansys Mechanical to look at manufacturing allowances for the permissible force used while mounting a complicated leaded component onto a board, as seen below. Or maybe, we will use mechanical simulation to find the optimal positioning of leads on a new package such that its natural vibrational frequencies are outside normal ambient conditions.

Figure 5: A surface component with discretely modeled leads, courtesy of Ansys

At the PCB level, we face many of the same detail-oriented challenges around representing traces and vias that have been mentioned for the electrical applications. They may not be quite as critical and more easily approximated in some ways, but that does not change the fact that copper traces are mechanically quite different from the resin composites often used as the substrate (like FR-4). Ansys tools like Sherlock provide best in class PCB modeling on this front, allowing us to directly bring in ECAD models with full trace and component detail, and then model them mechanically at several different levels depending on the exact need. Automating a materials property averaging scheme based on the local density of traces may be sufficient if we are looking at the general bending behavior of a board, but we can take it to the next level by explicitly modeling traces as “reinforcement” elements. This brings us to the level of detail where we can much more reliably look at the stresses present in individual traces, such that we can make good design decisions to reduce the risk of traces peeling or delaminating from the surface.

Figure 6: Example trace mapping workflow and methods, courtesy of Ansys

Beyond just looking at possible improvements in the design process, we can also make use of Ansys tools like LS-DYNA or Mechanical to replicate testing or accident conditions that an existing design could be subjected to. As a real-world example, many of us are all too familiar with the occasional consequences of accidentally dropping our smart phones – Ansys is used to test designs against these kind of shock events, where impact against a hard surface can result in high stresses in key locations. This helps us understand where to reinforce a design to protect against the worst damage or even what angle of impact is most likely to cause an operational failure.

As the finale for all of this, I come back to the first comment of reality being a complex Multiphysics problem. Many of the previous topics are not truly isolated to their respective physics (as much as we often simplify them as such), and this is one of the big ways in which the Ansys ecosystem shines: Comprehensive Multiphysics. For the topic of thermal reliability, I simply stated that electronics give off heat. This may be obvious, but that heat is not just a magical result of the device being turned on but is instead a physical and calculable result of the actual electrical behavior. Indeed, this the exact kind of result that we can extract from one of the relevant electronics tools. An HFSS solution will provide us with not only the electrical performance of an antenna but also the three-dimensional distribution of heat that is consequently produced. Ansys lets us very easily feed this information into an Icepak simulation, which then has the ability to give us far more accurate results than a typical uniform heat load assumption provides.

Figure 7: Coupled electrical-thermal simulation between HFSS and Icepak, courtesy of Ansys

If we find that our temperatures are particularly high, we might then decide to bring these results back into HFSS to locally change material properties as a function of temperature to get an even more accurate set of electrical results. It could be that this results in an appreciable shift in our antenna’s frequency, or perhaps the efficiency has decreased, and aspects of the design need to be revisited. These are some of the things that we would likely miss without a comprehensive Multiphysics environment.

On a more mechanical side, the effects on stress and strain from thermal conditions are very well known and understood at this point, but there is no reason we could not use Ansys to bring the electrical alongside this established thermal-mechanical behavior. After all, what is a better representation of the real physics involved than using SIwave or HFSS to model the electrical behavior of a PCB, bringing those result into an Icepak simulation as a heat load to test the performance of a cooling loop or heat sink, and then using at least some of those thermal results to look at stresses through not only a PCB as a whole but also individual traces? Not a whole lot at this moment in time, I would say.

The extension that we can make on these examples, is that they have by and large been representative cases of how an electronics device responds to a particular event or condition and judging its reliability metrics based on that set of results, however many physics might be involved. There is one more piece of the puzzle we have access to that also interweaves itself throughout the Multiphysics domain and that is Reliability Physics. This is mostly relevant to us in electronics reliability for considering how different events, or even just a repetition of the same event, can stack together and accumulate to contribute towards some failure in the future. An easy example of this is a plastic hinge or clip that you might find on any number of inexpensive products – flexing a thin piece of plastic like in these hinges can provide a very convenient method of motion for quite some time, but that hinge will gradually accumulate damage until it inevitably cracks and fails. Every connection within a PCB is susceptible to this same kind of behavior, whether it is the laminations of the PCB itself, the components soldered to the surface, or even the individual leads on a component. If our PCB is mounted on the control board of a bus, satellite, or boat, there will be some vibrations and thermal cycles associated with its life. A single one of these events may be of much smaller magnitude and seemingly negligible compared to something dramatic like a drop test, and yet they can still add up to the point of being significant over a period of months or years.

This is exactly the kind of thing that Ansys Sherlock proves invaluable for: letting us define and track the effect of events that may occur over a PCB’s entire lifecycle. Many of these will revolve around mechanical concepts of fatigue accumulating as a result of material stresses, but it is still important to consider the potential Multiphysics origins of stress. Different simulations will be required for each of mechanical bending during assembly, vibration during transport, and thermal cycling during operation, yet each of these contributes towards the final objective of electronics reliability. Sherlock will bring each of these and more together in a clear description of which components on a board are most likely to fail, how likely they are to fail as a function of time, and which life events are the most impactful.

Figure 8: Example failure predictions over the life cycle of a PCB using Ansys Sherlock, courtesy of Ansys

Really, what all of this comes down to is that when we design and create products, we generally want to make sure that they function in the way that we intend them to. This might be due to a personal pride in our profession or even just the desire to maximize profit through minimizing the costs associated with a component failure, however at the end it just makes sense to anticipate and try to prevent the failures that might occur under normal operating conditions.

For complex problems like electronics devices, there are many physics all intimately tied together in the consideration of overall reliability, but the Ansys ecosystem of tools allows us to approach these problems in a realistic way. Whether we’re looking at the electrical reliability of a circuit or antenna, the thermal performance of a cooling solution or algorithm, or the mechanical resilience of a PCB mounted on a bracket, Ansys provides a path forward.

If you have any questions or would like to learn more, please contact us at info@padtinc.com or visit www.padtinc.com.

Introducing Ansys Rocky – Webinar

PADT is excited to share more information on one of the latest Ansys acquisitions, Rocky DEM.

Rocky is a powerful 3D Discrete Element Modeling (DEM) Particle Simulation Software that quickly and accurately simulates the flow behavior of bulk materials with complex particle shapes and size distributions, for typical applications such as conveyor chutes, mills, mixers, and other materials handling equipment.

Rocky is fully integrated with the Ansys Workbench suite of products, providing engineers with the ability to perform coupled analysis of particles simulation together with other physics such as structural and fluids. 

Such coupling can be performed using both 1-way and 2-way approaches, depending upon the nature of the problem to be solved. When Rocky is coupled with Ansys Mechanical software, engineers can evaluate the tension stresses and forces generated by granular matter as it interacts with materials handling equipment, such as transfer chutes and conveyor belts.

Join PADT’s Senior CFD Engineer and Rocky expert Tom Chadwick for a look at what this tool is all about, as well as how it operates in a variety of industries, such as:

  • Food & Beverage
  • Agricultural Equipment
  • Medical Devices
  • And More

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Heat Transfer & Flow Updates in Ansys Fluent 2021 R1 – Webinar

Ansys Fluent is the industry-leading fluid simulation software known for its advanced physics modeling capabilities and unmatched accuracy.

This tool gives you more time to innovate and optimize product performance, allowing users to trust their simulation results with a software that has been extensively validated across a wide range of applications. Two key applications that have seen improvements in the 2021 R1 update are fluid flow and heat transfer.

Performing steady or transient conjugate heat transfer simulations determines heat exchanger performance and the impact of thermal stresses. Models developed in Ansys Fluent can include fluid structure interaction, fatigue life prediction and multiphase boiling, condensation and evaporation.

Additionally, new proprietary high-speed numerics in available in this release enable the reliable solution of high Mach number flows without reducing accuracy.

Join PADT’s Fluent expert Tom Chadwick for a presentation on the latest in fluid flow and heat transfer updates in Ansys 2021 R1.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Electronics Reliability Updates in Ansys 2021 R1 – Webinar

Best practices for ensuring and predicting electronics reliability require comprehensive multi-physics simulations. Ansys ensures reliability success by developing solutions and workflows that overcome today’s biggest simulation and design challenges. 

With Ansys 2021 R1, electronics reliability became much easier to manager with advanced capabilities for design democratization, workflow automation, and robust reliability predictions. Along with these updated components, users can better access integrated workflows between Ansys Sherlock, Icepak, Mechanical, LS-Dyna, and more to provide the results necessary to optimize product designs and ensure unparalleled reliability in the field. 

Join PADT’s Systems Application & Support Engineer Josh Stout for a presentation covering updates to existing features and the introduction of new tools available in this latest release. Learn how users can:

• Extract detailed geometries from any ECAD file

     • Predict time to failure before prototyping

     • Perform complex multiphysics analyses

     • Implement automation and optimization 

     • And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things Ansys 086: Thermal Integrity in Ansys 2021 R1

 

Published on: April 20th, 2021
With: Eric Miller & Josh Stout
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Systems Application & Support Engineer, Josh Stout in order to discuss what is new with regards to thermal integrity in Ansys 2021 R1.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Mechanical Analysis Updates in Ansys 2021 R1 – Webinar

Ansys 2021 R1 delivers significant improvements in simulation technology together with nearly unlimited computing power to help engineers across all industries reimagine product design and achieve product development goals that were previously thought impossible. 

With updates made to Ansys mechanical, users can easily handle the complexity of a variety of design environments. Everything from mulitphysics analysis to dynamic simulation allows for the ability to create a product that meets performance goals and holds up over time. 

Join PADT’s Application Engineer Robert McCathren for a look at analytical advancements in Ansys Mechanical 2021 R1, including updates for: 

          ​​​​• Element Technology

          • NonLinear Adaptivity

          • Coupled Physics Analysis

          • Linear Dynamics

          • Contact

          • And much more

Register Here

All Things Ansys 085: Additive & Structural Optimization Updates in Ansys 2021 R1

 

Published on: April 5th, 2021
With: Eric Miller & Doug Oatis
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Lead Mechanical Engineer, Doug Oatis in order to discuss what is new with regards to additive and structural optimization in Ansys 2021 R1.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things Ansys 084: The State of Mechanical Meshing in Ansys 2021

 

Published on: March 22nd, 2021
With: Eric Miller & Joe Woodward
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Senior Mechanical Engineer and Lead Trainer, Joe Woodward in order to discuss what new mechanical meshing capabilities are available in Ansys 2021.

Meshing is an integral part of the engineering simulation process where complex geometries are divided into simple elements that can be used as discrete local approximations of the larger domain. The mesh influences the accuracy, convergence and speed of the simulation. Furthermore, since meshing typically consumes a significant portion of the time it takes to get simulation results, the better and more automated the meshing tools, the faster and more accurate the solution.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things Ansys 083: Digital Mission Engineering & the Acquisition of AGI

 

Published on: March 8th, 2021
With: Eric Miller, Anthony Dawson & Paul Graziani
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Anthony Dawson, Vice President & General Manager at Ansys, and Paul Graziani, CEO and Co-Founder of Analytical Graphics, Inc. (AGI) to discuss the acquisition of AGI and what it means for those simulating in the aerospace and defense industry.

Digital mission engineering, pioneered by AGI, combines digital modeling, simulation, testing, and analysis for aerospace, defense, telecommunication, and intelligence applications to evaluate mission outcomes at every phase of a system’s life cycle. Using this tool you can evaluate the full effect of every change you make and find problems before they become crises.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

The State of Mechanical Meshing in Ansys 2021 R1 – Webinar

Meshing is an integral part of the engineering simulation process where complex geometries are divided into simple elements that can be used as discrete local approximations of the larger domain. The mesh influences the accuracy, convergence and speed of the simulation. Furthermore, since meshing typically consumes a significant portion of the time it takes to get simulation results, the better and more automated the meshing tools, the faster and more accurate the solution.

Ansys provides general purpose, high-performance, automated, intelligent meshing software which produces the most appropriate mesh for accurate, efficient multiphysics solutions — from easy, automatic meshing to highly crafted mesh. 

Join PADT’s Senior Mechanical Engineer and meshing expert Joe Woodward for an introduction to the new meshing capabilities available in Ansys 2021 R1, including updates for: 

• Repairing Topology

• Weld Control

• Separating Morphing Adaptive Remeshing Technology (SMART)

• Batch Connections

• And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things Ansys 082: High Frequency Updates on Ansys 2021 R1

 

Published on: February 26th, 2021
With: Eric Miller & Aleksandr Gafarov
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Electronics Application Engineer Aleksandr Gafarov for a look at what’s new in this electromagnetics release.

When it comes to high frequency electromagnetics, Ansys 2021 R1 delivers a plethora of groundbreaking enhancements. Ansys HFSS Mesh Fusion enables simulation of large, never before possible electromagnetic systems with efficiency and scalability.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS