@ANSYS #ANSYS
@ANSYS #ANSYS
@ANSYS #ANSYS
ANSYS CFD goes beyond qualitative results to deliver accurate quantitative predictions of fluid interactions and trade-offs. These insights reveal unexpected opportunities for your product — opportunities that even experienced engineering analysts can miss.
Products such as ANSYS Fluent, Polyflow, and CFX work together in a constantly improving tool kit that is developed to provide ease of use improvements for engineers simulating fluid flows and it’s impacts on physical models.
Join PADT’s Simulation Support and Application Engineer, Sina Ghods, for a look at what is new and improved for fluids-related tools in ANSYS 2019 R2. This presentation includes updates regarding:
A new fluent experience
Parallel Mosaic-enabled meshing
Discrete Phase Modeling
Creating high-quality meshes for complex models
Transient elasticity for fluid structure interaction
And much more
If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).
You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!
When it comes to the exploration of rapid 3D design, simulation provides a more efficient and optimized workflow for design engineers looking to streamline product development and improve product performance. The toolkit of flagship ANSYS 3D design products made up of Discovery SpaceClaim, Discovery Live, and Discovery AIM allow users to build, and optimize lighter and smarter products with an interface easier to use than most other simulation products.
Users can delve deeper into the details of a design with the same accuracy as other, more robust ANSYS tools, all while refining their concept and introducing multiple physics simulations to better account for real-world conditions.
Join PADT’s Simulation Support Manager Ted Harris, for a look at what’s new for this line of products with the release of ANSYS 2019 R2. Explore updates for these three tools including:
If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).
You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!
@ANSYS #ANSYS
An intelligent, high-quality mesh is at the core of any effective simulation based model; creating the basis for what will help to drive valuable results for even the most complex engineering problems.
Among a variety of tools in ANSYS 2019 R2 are enhanced meshing capabilities that can help reduce pre-processing time and provide a more streamlined solution.
Join PADT’s Specialist Mechanical Engineer, Joe Woodward for a look at what new meshing capabilities are available in the latest release of ANSYS. This presentation will focus predominately on updates regarding:
ANSYS Mechanical Meshing Batch Connections Axisymmetric Sweep Layered Tetrahedron Enhancements Local Sizing Enhancements | SpaceClaim Meshing Parameter Management Direct Modeling/Meshing Hex Meshing Block Decomposition |
And much more!
If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).
You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!
ANYSY HFSS provides many options for creating non-planar and conformal shapes. In MCAD you may use shapes such as cylinders or spheres, and with some steps, you can design you antennas on various surfaces. In some applications, it is necessary to study the effect of curvatures and shapes on the antenna performance. For example for wearable antennas it is important to study the effect of bending, crumpling and air-gap between antenna and human body.
One of the tools that HFSS offers and can be used to do parametric sweep or optimization, is “Draw equation based surface”. This can be accessed under “Draw” “Equation Based Surface” or by using “Draw” tab and choosing it from the banner (Fig. 1)
Once this is selected the Equation Based Surface window that opens gives you options to enter the equation with the two variables (_u, _v_) to define a surface. Each point of the surface can be a function of (_u,_v). The range of (_u, _v) will also be determined in this window. The types of functions that are available can be seen in “Edit Equation” window, by clicking on “…” next to X, Y or Z (Fig. 2). Alternatively, the equation can be typed inside this window. Project or Design Variables can also be used or introduced here.
For example an elliptical cylinder along y axis can be represented by:
This equation can be entered as shown in Fig. 3.
Variation of this equation can be obtained by changing variables R1, R2, L and beta. Two examples are shown in Fig. 4.
To make use of this function to transfer a planar design to a non-planar design of interest, the following steps can be taken:
A new wave port can be defined by the following steps:
Similar method can be used to generate (sin)^n or (cos)^n surfaces. Some examples are shown in Fig. 11. Fig. 11 (a) shows how the surface was defined.
Bending a substrate can change the transmission line and antenna impedance. By using equation based port the change in transmission line impedance effect is removed. However, the overall radiation surface is also changed that will have effects on S11. The results of S11 for the planar design, cylindrical design (Fig. 8), cos (Fig. 11 b), and cos^3 (Fig. 11 c) designs are shown in Fig. 12. If it is of interest to include the change in the transmission line impedance, the port should be kept in a rectangular shape.
Equation based curves and surfaces can take a bit of time to get used to but with a little practice these methods can really open the door to some sophisticated geometry. It is also interesting to see how much the geometry can impact a simple antenna design, especially with today’s growing popularity in flex circuitry. Be sure to check out this related webinar that touches on the impact of packaging antennas as well. If you would like more information on how these tools may be able to help you and your design, please let us know at info@padtinc.com.
You can also click here to download a copy of this example.
ANSYS Mechanical is a very powerful tool right out of the box. Long gone are the days when an FEA tool was just a solver, and users had to write code to create input files and interpret the results. Most of the time you never have to write anything to effectively use ANSYS Mechanical. But, users can realize significant gains in productivity and access greater functionality through customization. And it is easy to do.
Before we talk about the four options, we need to remember how the tool, ANSYS Mechanical, is actually structured. The interface that users interact with is a version of ANSYS Workbench called ANSYS Mechanical. The interface allows users to connect to geometry, build and modify their model, set up their solution, submit a solve, and review results. The solve itself is done in ANSYS Mechanical APDL. This is the original ANSYS Multiphysics program.
When you press the solve button ANSYS Mechanical writes out commands in the languages used by ANSYS Mechanical APDL, called the ANSYS Parametric Design Language, or APDL. Yes, that is where ANSYS Mechanical APDL got its name. We like to call it MAPDL for short. (Side note: years ago we started a campaign to call it map-dul. It didn’t work.) Once the file is written, MAPDL is started, the file is read in, the solve happens, and all of the requested output files are written. Then ANSYS Mechanical reads those files and shows results to the user.
Not every capability that is found in ANSYS Mechanical APDL is exposed in the interface for ANSYS Mechanical. That is not a problem because users can use the APDL language in ANSYS Mechanical to access the full capability of the solver. These small pieces of code are called Snippets and they are added to the tree for your ANSYS Mechanical model. When the solver file is written, ANSYS Mechanical inserts your snippets into the command stream. Simple and elegant.
PADT has a seminar from back in 2011 that lays it all out. You can find the PowerPoint Presentation here. We do have plans to update this webinar soon.
This approach is used when you want to access capabilities in the solver that are not supported in the interface but you want to get to those features and keep track of them from inside your ANSYS Mechanical Model.
If you are not familiar with APDL, find a more “seasoned” user to help you. Or you can teach yourself APDL programming with PADT’s Guide to APDL .
As mentioned above, ANSYS Mechanical is used to define the model and review results. The ANSYS Customization Toolkit (ACT) is how users customize the user interface, automate tasks in the interface, add tools to the interface, and access the model database. This type of customization can be as simple as a new feature, presented as an app, or it can be used to create a focused tool to streamline a certain type of simulation – what we call a vertical application.
Unlike APDL, ACT does is not have its own language. It uses Python and is a collection of Application Programmer Interface (API) calls from Python. This is a very powerful toolset that increases in capability at every release. PADT has written stand alone applications using ACT to reduce simulation time significantly. We have also written features and apps for ourselves and users that make everyday use of ANSYS Mechanical better.
Do note that ACT is supported in most of the major ANSYS products and more capability is being added across the available programs over time, not just in ANSYS Mechanical. You can also use ACT to connect ANSYS Mechanical to in-house or 3rd party software.
Because this is a standard environment, you can share your ACT applications on the ANSYS App Store found here. Take a look and you can see what users have done with ACT across the ANSYS Product suite, including ANSYS Mechanical. PADT has two in the library, one for adding a PID controller to your model and the other is a tool for saving your ANSYS Mechanical APDL database.
Another great aspect of ACT is that it is fully documented. If you go to the Customization Suite documentation in the ANSYS help library you can find everything you need.
With Code Snippets we talked about using APDL to access solver functions from ANSYS Mechanical that were not supported in ANSYS Mechanical. You can also use APDL to automate what is going on during the solve. Every capability in the ANSYS solver is accessible through APDL.
The most common usage of APDL is to create a tool that solves in batch mode. APDL programs are used to carry out tasks without going back to ANSYS Mechanical. As an example, maybe you want to solve a load step, save some information from the solve, export it, read it in to a 3rd party program, modify it, modify some property in your model, then solve the next load step. You can do all of that with APDL in batch mode.
This is not for the faint of heart, you are getting into complex programming with a custom language. But if you take the time, it can be very powerful. All of the commands are documented in the ANSYS Mechanical APDL help and details on the language are in the ANSYS Parametric Design Language Guide. The PADT Blog is full of articles going back over a decade on using APDL in this way.
One of the most powerful capabilities in the ANSYS Mechanical ADPL solver is the ability for end-users to add their own subroutines. These User Programable Features, or UPF’s, allow you to create your own elements, make custom material models, customize loads, or customize contact behavior.
There are other general purpose FEA tools on the market that heavily publicize their user elements and user materials and they try to use it to differentiate themselves from ANSYS. However, ANSYS Mechanical APDL has always had this capability. Many universities and companies add new capability to ANSYS using this method.
To learn more about how to do create your own custom version of ANSYS, consult the Programer’s Reference in the ANSYS Help. PADT also has a webinar sharing how to make a custom material here.
The key to successful customization ANSYS is to know your options, understand what you really want to do, and to use the wide range of tools you have available. Everything is documented in the help and this blog has some great examples. Start small with a simple project and work your way up.
Or, you can leverage PADT’s expertise and contract with PADT to do your customization. This is what a half-dozen companies large and small have done over the years. We understand ANSYS, we get engineering, and we know how to program. A perfect combination.
Regardless of how you customize ANSYS Mechanical, you will find it a rewording experience. Greater functionality and more efficient usage are only a few lines of custom code away.
@ANSYS #ANSYS
Engineering simulation has traditionally been used for new product design and virtual testing, eliminating the need to build multiple prototypes prior to product launch.
Now, with the emergence of the Industrial Internet of Things (IIoT), simulation is expanding into operations. The IIoT enables engineers to communicate with sensors and actuators on an operating product to capture data and monitor operating parameters. The result is a digital twin of the physical product or process that can be used to monitor real-time prescriptive analytics and test predictive maintenance to optimize asset performance.
Join PADT’s Senior Analyst & Lead Software Developer Matt Sutton for an in depth look at how digital twins created using ANSYS simulation tools optimize the operation of devices or systems, save money by reducing unplanned downtime and enable engineers to test solutions virtually before doing physical repairs.
This webinar will include an overview of technical capabilities, packaging for licensing, and updates made with the release of ANSYS 2019 R1.
If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).
You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!
@ANSYS #ANSYS
The ANSYS 3D Design family of products enables CAD modeling and simulation for all design engineers. Since the demands on today’s design engineer to build optimized, lighter and smarter products are greater than ever, using the appropriate design tools is more important than ever.
Two key tools helping design engineers meet such demands are ANSYS Discovery AIM and ANSYS Discovery Live. ANSYS Discovery AIM seamlessly integrates design and simulation for all engineers, helping them to explore ideas and concepts in greater depth, while Discovery Live operates as an environment providing instantaneous simulation, tightly coupled with direct geometry modeling, to enable interactive design exploration.
Both tools help to accelerate product development and bring innovations to market faster and more affordably.
Join PADT’s Simulation Support Manager, Ted Harris for a look at what exciting new features are available for design engineers in both Discovery Live and AIM, in ANSYS 2019 R1. This webinar will include discussions on updates regarding:
If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).
You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!
@ANSYS #ANSYS
Effective prototyping in today’s day and age requires not only an understanding of your product’s capabilities but also those of the environment it operates in, and how said environment impacts its use.
Engineers are finding that it is no longer possible to ignore the interactions between fluids and the structures that surround them, as they strive to optimize their product’s performance.
EnSight helps you visualize coupled fluid-structure interaction data to gain the insights you need; providing a highly effective environment regardless of the complexity of the situation and the simulation being run. After exploring your data, EnSight can also be used to create a high quality visual representation to effectively communicate your results, thanks to the ability to place your model in immersive environments, add realistic lighting conditions, and so much more.
Join PADT’s CFD Team Lead Engineer, Clinton Smith as we explore the capabilities of this tool, and take a look at what’s new in ANSYS 2019 R1, including updates on:
If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).
You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!
@ANSYS #ANSYS