Understanding Honeycomb Structures in Additive Manufacturing – Three Papers from ASU and PADT

PADT is currently partnering with Arizona State University’s 3DXResearch group on exploring bio-inspired geometries for 3D Printing. As part of that effort, one of our engineers involved in the project, Alex Grishin, PhD, was a co-author on several papers that have been published during this project.

Below is a brief summary from Alex of each article, along with links.


An Examination of the Low Strain Rate Sensitivity of Additively Manufactured Polymer, Composite and Metallic Honeycomb Structures

PADT participated in the research with the above title recently published in the open-access online journal MDPI ( https://www.mdpi.com/1996-1944/12/20/3455/htm ). This work was funded by the America Makes Program under a project titled “A Non-Empirical Predictive Model for Additively Manufactured Lattice Structures” and is based on research sponsored by the Air Force Research Laboratory under agreement number FA8650-12-2-7230.

Current ASU professor and former PADT employee Dhruv Bhate was the Lead Investigator and wrote the original proposal. Dhruv’s research interests involve bio-inspired design (the study of structures found in nature to help inform human design efforts) and additive manufacturing. Dhruv is particularly interested in the bulk properties of various lattice arrangements. While investigating the highly nonlinear force-deflection response of various additively manufactured honeycomb specimens under compression, Dhruv discovered that polymer and composite honeycombs showed extreme sensitivity to strain rates –showing peak responses substantially higher than theory predicts at various (low) strain rates. This paper explores and quantifies this behavior.

The paper investigates hexagonal honeycomb structures manufactured with four different additive manufacturing processes: one polymer (fused deposition modeling, or material extrusion with ABS), one composite (nylon and continuous carbon fiber extrusion) and two metallic (laser powder bed fusion of Inconel 718 and electron beam melting of Ti6Al4V). The strain rate sensitivities of the effective elastic moduli, and the peak loads for all four processes were compared. Results show significant sensitivity to strain rate in the polymer and composite process for both these metrics, and mild sensitivity for the metallic honeycombs for the peak load.

PADT contributed to this research by providing ANSYS simulations of these structures assuming viscoplastic material properties derived from solid dog-bone test specimens. PADT’s simulations helped provide Dhruv with a proposed mechanism to explain why INSTRON compression tests of the honeycomb structures showed higher peak responses (corresponding to classical ultimate stress) for these specimens than the solid specimens.


Bioinspired Honeycomb Core Design: An Experimental Study of the Role of Corner Radius, Coping and Interface

PADT participated in the NASA-funded research with the above title recently published in the open-access online journal MDPI (https://www.mdpi.com/2313-7673/5/4/59/htm ). This work was guided by former PADT engineer and current ASU Associate Professor Dhruv Bhate.  Professor Bhate’s primary research interests are Bio-Inspired Design and Additive Manufacturing. It was only natural that he would secure a grant for this research from NASA’s  Periodic Table of Life ( PeTaL) project. To quote from the website, “the primary objective…is to expand the domain of inquiry for human processes that seek to model those that are, were or could be found in nature…”

This paper focuses on the morphology of bee honeycombs found in nature –the goal being to identify key characteristics of their structure, which might inform structural performance in man-made designs incorporating similar lattice structures. To this end, the paper identifies three such characteristics: The honeycomb cell corner radius, the cell wall “coping” (a localized thickening of the cell wall at the mouth of each cell seen in a lateral cross-section), and the cell array “interface” (a zigzag pattern seen at the interface of two opposing, or “stacked” arrays).

Most of this work involved material testing and measuring dozens of natural honeycombs (most coming from various museums of natural history found in the United States) at ASU’s state-of-the-art facilities. PADT  contributed substantially by verifying and guiding tests with simulation using the ANSYS suite of software.


A Comparison of Modeling Methods for Predicting the Elastic-Plastic Response of Additively Manufactured Honeycomb Structures

PADT participated in this research found in the reviewed article published in Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference.

Figure 14. (left) 2D plane strain model with platens connected to honeycomb with frictional contacts and (right) close-up of an individual cell showing the mesh size as well as corner radius modeled after experimental measurements

The lead investigator was current ASU professor and former PADT employee Dhruv Bhate, whose research interests involve Bio-Inspired Design (the study of natural structures to help inform human design processes) and Additive Manufacturing. In this research, Dhruv investigates discrepancies between published (bulk) material properties for the Fused Deposition Modeling (FDM) of ABS honeycomb structures. The discrepancies arise as substantial differences between published material properties, such as Young’s Modulus and yield stress, and those determined experimentally from FDM dog-bone specimens of the same material (which he refers to as “member” properties).

Figure 4. (left) Homogenization enables the replacement of a cellular material with a solid of effective properties, (right) which can greatly reduce computational expense when simulating engineering structures

PADT’s role in this research was crucial for demonstrating that the differences in base material characterization are greatly exacerbated in nonlinear compression simulations of the ABS honeycomb structures. PADT used both the manufacturer’s published properties, and the dog-bone data to show substantial differences in peak stress under the two assumptions.

https://www.scopus.com/record/display.uri?eid=2-s2.0-85084948560&origin=inward&txGid=a19776da6deb7846e12bc8f7573181ab

Press Release: Grant to ASU, PADT, and Others for Advancement of 3D Printing Post-Processing Techniques

We are very pleased to announce that PADT is part of another successful Federal grant with ASU in the area of Additive Manufacturing.  This is the second funded research effort we have been part of in the past twelve months and also our second America Makes funded project.

It is another great example of PADT’s cooperation with ASU and other local businesses and also shows how Arizona is becoming a hub for innovation around this important and growing technology.

Please find the official press release on this new partnership below and here in PDF and HTML.

You can find links to our other recent research grants here:

If you have any questions about, additive manufacturing or this project, reach out to info@padtinc.com or call 480.813.4884.

Press Release:

$800,000 in Matching Funds Appointed to ASU, PADT and Other Partners by America Makes for the Advancement of 3D Printing Post-Processing Techniques

This Grant Marks PADT’s Second Federally Funded Project in the Past Year, and its Second America Makes Funded Project in the Past Two Years

TEMPE, Ariz., January 24, 2019 ─ PADT, a globally recognized provider of numerical simulation, product development, and 3D printing products and services, has announced it has joined ASU in a Directed Project Opportunity to advance post-processing techniques used in additive manufacturing (AM). The project is being funded by the Air Force Research Laboratory (AFRL) and the Materials and Manufacturing Directorate, Manufacturing and Industrial Base Technology Division and driven by the National Center for Defense Manufacturing and Machining (NCDMM).

ASU was one of two awardees that received a combined $1.6M with at least $800K in matching funds from the awarded project teams for total funding worth roughly $2.4M. ASU will lead the project, while PADT, Quintus Technologies, and Phoenix Heat Treating, Inc. have joined to support the project.

“Our ongoing partnership with ASU has allowed us to perform critical research into the advancement of 3D printing,” said Rey Chu, principal and co-founder, PADT. “We are honored to be involved with this project and look forward to applying our many years of technical expertise in 3D printing post-processing.”

The goal of this research is to yield essential gains in process control, certified processes, and the qualification of materials and parts to drive post-processing costs down and make 3D printing more accessible. PADT will be responsible for providing geometry scanning capabilities, as well as technical expertise.

PADT has deep experience in 3D printing post-processing techniques due to the development of its proprietary Support Cleaning Apparatus (SCA), the best-selling post-processing hardware on the market. Initially released in November 2008, more than 12,500 SCA systems have sold to-date. The SCA system was awarded a U.S. patent in October 2018.

This grant will be the second federally funded research project in 2018 which teams PADT and ASU to advance 3D printing innovation and adoption. The first project received a $127,000 NASA STTR grant and is aimed at accelerating biomimicry research, the study of 3D printing objects that resemble strong and light structures found in nature such as honeycombs.

For more information on PADT and its background in 3D printing post-processing, please visit www.padtinc.com.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Media Contact
Alec Robertson
TechTHiNQ on behalf of PADT
585-281-6399
alec.robertson@techthinq.com
PADT Contact
Eric Miller
PADT, Inc.
Principal & Co-Owner
480.813.4884
eric.miller@padtinc.com

Press Release: NASA Awards a $127,000 STTR Research Grant to PADT and ASU for Advanced Research in 3D Printing

For as long as PADT has been involved in Additive Manufacturing, we have been interested in how the process of building geometry one layer at a time could be used to more closely represent how nature creates objects.  Nature is able to create strong, lightweight, and flexible structures that can not be created using traditional ways of manufacturing like machining, molding, or forming.  3D Printing gives engineers and researchers the ability to explore the same shapes that nature creates.

As you can imagine, strong and light structures are very beneficial for objects that need to be launched into space.  That is why NASA just awarded PADT and Arizona State University, a Phase 1 STTR grant to explore how to make just this type of geometry.  We are excited to work with ASU to define what the possibilities are in this first phase and then apply for a Phase 2 grant to bring real-world applications of this technology to industry.

This is PADT’s 14th SBIR/STTR and our second joint project with Dr. Dhruv Bhate at ASU.  Many of you may remember the research and process improvements that Dhruv worked on when he was a PADT employee.  We look forward to sharing our results with the Additive Manufacturing community and moving this exciting application for the technology forward.

Please find the official press release on this new partnership below and here in PDF and HTML

If you have any questions about high-performance computing for simulation, either with local hardware or compute resources in the cloud, reach out to info@padtinc.com or call 480.813.4884.

Press Release:

NASA Awards a $127,000 STTR Research Grant to PADT and ASU
for Advanced Research in 3D Printing

The Grant Represents the Strength of 3D Printing in Arizona Exemplified by the Strong Cooperation Between Industry and Academia

TEMPE, Ariz., August 14, 2018 ─ To further advance their longstanding cooperation, PADT and Arizona State University (ASU) were awarded a $127,000 Small Business Technology Transfer (STTR) Phase I grant from NASA. The purpose of the grant is to accelerate biomimicry research, the study of 3D printing objects that resemble strong and light structures found in nature such as honeycombs or bamboo. The research is critically important to major sectors in Arizona such as aerospace because it enables strong and incredibly light parts for use in the development of air and space crafts.

“We’re honored to continue advanced research on biomimicry with our good friends and partners at ASU,” said Rey Chu, principal and co-founder, PADT. “With our combined expertise in 3D printing and computer modeling, we feel that our research will provide a breakthrough in the way that we design objects for NASA, and our broad range of product manufacturing clients.”

PADT recently partnered with Lockheed Martin and Stratasys to help NASA develop more than 100 3D printed parts for its manned-spaceflight to Mars, the Orion Mission. This grant is another example of how PADT is supporting NASA efforts to use 3D printing in spacecraft development. Specific NASA applications of the research include the design and manufacturing of high-performance materials for use in heat exchanges, lightweight structures and space debris resistant skins. If the first phase is successful, the partners will be eligible for a second, larger grant from NASA.

“New technologies in imaging and manufacturing, including 3D printing, are opening possibilities for mimicking biological structures in a way that has been unprecedented in human history,” said Dhruv Bhate, associate professor, Arizona State University. “Our ability to build resilient structures while significantly reducing the weight will benefit product designers and manufacturers who leverage the technology.”

“PADT has been an excellent partner to ASU and its students as we explore the innovative nature of 3D printing,” said Ann McKenna, school director and professor, Ira A. Fulton Schools of Engineering, Arizona State University. “Between the STTR grant and partnering to open our state-of-the-art Additive Manufacturing Center, we’re proud of what we have been able to accomplish in this community together.”

This grant is PADT’s 14th STTR/SBIR award.

To learn more about PADT and its 3D printing services, please visit www.padtinc.com.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Media Contact
Alec Robertson
TechTHiNQ on behalf of PADT
585-281-6399
alec.robertson@techthinq.com
PADT Contact
Eric Miller
PADT, Inc.
Principal & Co-Owner
480.813.4884
eric.miller@padtinc.com

 

ASU Polytechnique Deploys Robots in Project for 3D Printing Automation for Orbital ATK

Sometimes we run across some great exampls of industry and academia working together and like to share them as examples of win-win partnerships that can move technology forward and give studends a great oportunity.   A current Capstone Design Project by students at ASU Polytechnique is a great example.  It is also an early exmple of what can be done at the brand new Additive Manufacturing Center that was recently opened at the campus.

I’ll let ASU Mecanical Enginering Systems student Dean McBride tell you in his own words:

Orbital ATK in Chandler currently utilizes two Stratasys Dimension SST 1200es printers to prototype various parts with.  These printers print on parts trays, which must be removed and re-inserted into the printer to start new prints.  Wanting to increase process efficiency, Orbital had the desire of automating this 3D printing process during times when employees are not present to run the printers.  After the idea was born, Orbital presented this project to ASU Polytechnic as a potential senior capstone design project.  Shortly after, an ambitious team was assembled to take on the project.

 Numerous iterations of the engineering design process took place, and the team finally arrived at a final solution.  This solution is a Cartesian style robot, meaning the robot moves in linear motions, similar to the 1200es printer itself.  The mechanical frame and structure of the robot have been mostly assembled at this point.  Once assembly is achieved, the team will focus their efforts on the electrical system of the robot, as well as software coding of the micro-controller control system.  The team will be working to fine tune all aspects of the system until early May when the school semester ends.  The final goal of this project is to automate at least two complete print cycles without human interaction.

Here is a picture of the team with the robot they are building along side the Stratasys FDM printer they are automating.

 

Kids, Race Cars, and Scanned Turtle Shells: PADT’s 2017 SciTech Festival Open House

There is something about a kid running down a hallway screaming “mom, you HAVE to see this!” #openhousegoals.

Last night was our annual event where we open up the doors of PADT with a family oriented event sharing what we engineers do.  We also invited some students from high school and University to share their engineering activities.  With over 250 attendees and more than one excited kid running down the hall, we can safely call it a success.

Attendies were able to see our 3D Printing demo room including dozens of real 3D printed parts, learn about engineering, explore how 3D Printing works, and check out our new metal 3D Printer. They were also able to learn about school projects like the ASU Formula SAE race car as well as a prosthetic hand project and research into cellular structures in nature from BASIS Chandler.

Oh, and there was Pizza.

Pictures speak louder than words, so here is a galary of images from the event.

Update on ASU 3D Printing Research and Teaching Lab

Two weeks ago we were part of a fantastic open house at the ASU Polytechnic campus for the grand opening of the Additive Manufacturing Research center, a part of the Manufacturing Research and Innovation Hub.  What a great event it was where the Additive Manufacturing community in Arizona gathered in one place to celebrate  this important piece in the local ecosystem.  A piece that puts Arizona in the lead for the practical application of 3D Printing in industry.

I could go on and on, but better writers by far have penned some great stories on the event and on the lab.

ASU’s article is here: New hub’s $2 million in cutting-edge 3-D printing equipment will allow students to stay on forefront of rapidly growing sector

And Hayley Ringle of the Phoenix Business Journal summed it all up, with some great insight into the impact on education and job growth in “See inside the Southwest’s largest 3D printing research facility at ASU

And last but not least, here are some pictures related to PADT that ASU provided:

Press Release: Concept Laser, Honeywell, and PADT Build Largest Additive Manufacturing Center in Southwest at Arizona State University

PADT-Press-Release-IconOn January 18th, ASU will officially Launch their Manufacturing Research and Innovation Hub, the Largest Additive Manufacturing  research and teaching center in the Southwestern US.  PADT is proud to have partnered with ASU as well as with Concept Laser and Honeywell to get this important piece of the local manufacturing ecosystem started and to keep it growing.

Located on the Polytechnic School at ASU in Mesa, Arizona, this facility is amazing.  And you can see it for yourself, the public is invited to the launch on January 18th, 2017 at 9:00 am.  ASU Polytechnic Dean Kyle Squires and the Director Ann McKenna will be speaking as will our very own Rey Chu, John Murray from Concept Laser, and Don Godfrey from Honeywell.  Tours will follow. Learn more and register for this free event that will bring together the local 3D Printing community here.

You can also learn more by reading the official press release from Concept Laser that outlines what the center does and the partnerships that make it possible:

Press Release:

Concept Laser, Honeywell, and PADT Build Largest Additive Manufacturing Center in Southwest at Arizona State University

GRAPEVINE, Texas, January 11, 2017 – The Polytechnic School at Arizona State University (ASU) offers the only manufacturing engineering undergraduate degree in Arizona; it is also one of only 22 ABET accredited manufacturing engineering programs in the United States. By forming a partnership with Concept Laser, Honeywell Aerospace, and PADT, Inc. the largest additive manufacturing research facility in the Southwest is now on the Polytechnic campus. The 15,000 square foot center holds over $2 million of plastic, polymer, and 3D metal printing equipment.

The lab has a Concept Laser M2 cusing and Mlab cusing machine which are dedicated to 3D metal printing, also known as metal additive manufacturing. Unlike conventional metal fabrication techniques, additive manufacturing produces fully-dense metal parts by melting layer upon layer of ultra-fine metal powder. The Polytechnic School is using the machines for a wide range of research and development activities including materials development and prototyping complex mechanical and energy systems.

Supporting quotes:

Don Godfrey, Engineering Fellow at Honeywell: “Honeywell is thrilled to be participating in the opening of the new additive manufacturing laboratory at the Arizona State University Polytechnic campus.  For many years, we have worked with ASU seniors on their capstone projects with three of these projects this school year additive manufacturing focused. In addition to our own additive manufacturing operations, we have provided mentorship to students in the program and assisted in the procurement of one machine for the schools’ new lab.  We look forward to growing our relationships with the university in developing brilliant minds to tackle and overcome industry challenges associated with aviation and additive manufacturing.”

John Murray, President and CEO of US-based subsidiary Concept Laser Inc: “Changing the future of metal additive manufacturing begins with educated teachers and curious students. The educational leadership that the ASU Polytechnic School provides to the Southwest region and the industry will certainly be impactful. Concept Laser is proud to be a partner in this initiative.”

Rey Chu, Principal, Manufacturing Technologies at PADT, Inc: This partnership is the next and obvious step in the progression of additive manufacturing in the Southwest.  With Concept Laser’s outstanding technology, Honeywell’s leadership in applying additive manufacturing to practical Aerospace needs, PADT’s extensive network of customers and industry experience, and ASU’s proven ability to educate and work with industry, the effort will establish a strong foundation for the entire regional ecosystem.

Ann McKenna, Director of ASU’s Polytechnic School: “Partnering with these industry leaders provides us the capability to do additional research and enhance our education programs. With so few of these types of centers, this makes ASU more attractive among academic partners, federal agencies and corporations to advance additive manufacturing.

The ASU Polytechnic School will be hosting an open house to celebrate the launch of their Manufacturing Research and Innovation Hub on January 18, 2017 at 9am. There will be guided tours showcasing student projects. Honeywell, Concept Laser, and PADT will be in attendance. Please register your attendance at  www.mrihlaunch.eventbrite.com.

About Concept Laser  

Concept Laser GmbH is one of the world’s leading providers of machine and plant technology for the 3D printing of metal components. Founded by Frank Herzog in 2000, the patented LaserCUSING® process – powder-bed-based laser melting of metals – opens up new freedom to configuring components and also permits the tool-free, economic fabrication of highly complex parts in fairly small batch sizes.

Concept Laser serves various industries, ranging from medical, dental, aerospace, toolmaking and mold construction, automotive and jewelry. Concept Laser machines are compatible with a diverse set of powder materials, such as stainless steel and hot-work steels, aluminum and titanium alloys, as well as precious metals for jewelry and dental applications.

Concept Laser Inc. is headquartered in Grapevine, Texas and is a US-based wholly owned subsidiary of Concept Laser GmbH. For more information, visit our website at www.conceptlaserinc.com

LaserCUSING® is a registered trademark of Concept Laser.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

 About Arizona State University

The Ira A. Fulton Schools of Engineering at Arizona State University include nearly 19,000 students and more than 300 faculty members who conduct nearly $100 million in research, spanning a broad range of engineering, construction and technology fields. Across the six schools contained within the Fulton Schools, 24 undergraduate and 32 graduate programs are offered on ASU’s Tempe and Polytechnic campuses and online. The schools’ educational programs emphasize problem solving, entrepreneurship, multidisciplinary interactions, social context and connections. Arizona State University includes more than 80,000 students and 1,600 tenured or tenure-track faculty on multiple campuses in metropolitan Phoenix as well as online. For more information, please visit www.asu.edu or asuonline.asu.edu.

Press contact:
Joyce Yeung, Director of Marketing
Concept Laser
Phone: (817) 328-6500
E-mail: j.yeung@conceptlaserinc.com

PADT Contact
Eric Miller
PADT, Inc.
Principal & Co-Owner
480.813.4884
eric.miller@padtinc.com

Phoenix Business Journal: ​Arizona solidifies position as a leader in space technology

Just-Published-PBJ-1The resent launch of OSIRIS-REx probe to visit the asteroid Bennu was a milestone for Arizona.  In “Arizona solidifies position as a leader in space technology” I review how ASU, UofA and Tempe’s Kinnetx played a key role in device design and development as well as mission and scientific control.

ASU Research Park Celebrates 30 Years

ASURP-30th-StickerHow do you turn a political defeat into a big win, you look at your options, decide where you want to go, and you do it.  That is what a group of valley visionaries did in the early 1980’s when the state decided that only the University of Arizona could should have an agriculture program. That left Arizona State University with a large working farm that needed to be taken down. They could have sold the land for quick profit.  But instead they looked at options that would provide the most long-term benefit to the school, the state, and the local community.
The result, thirty years ago, was the ASU Research Park.  Located just west of the 101 Loop between Warner and Elliot roads, the Park is now a vibrant and thriving hot-spot of technical innovation and realization.  This is not an incubator where people try to be successful in technology, this is where people who are successful with technology come to get stuff done.
PADT is pleased to own a building in the Park, the PADT Innovation Center, where our headquarters are located along with three other business that lease space from us.  We have found the park to be a supportive place, centrally located, with great facilities for our employees.  

The event was marked with a breakfast gathering of tenants, Tempe officials, Park board members, and representatives from ASU. Dr. Michael Crow, the President of ASU gave a great speech on how the park in particular helped move ASU towards being a true research university. He stressed that unlike in most places, ASU didn’t plan and study and move slowly. They wanted to become a research university and if you want to be a research university, you need a research park. So they built a research park, and in the end, a very successful one.

ASURP-30th-DrCrow
Some interesting facts about the park:

  • Home to 49 companies with a total of over 4,500 employees
  • Generates over $2,000,000 annually for ASU
  • Has a $816,000,000 annual impact on the Arizona economy, generating 11,180 jobs
  • 89% of the park is leased, 26 Acres still available
  • 1,790,000 sqft of office space, with 350,000 sqft under construction.

ASURP-30th-Mayor-MitchelThe mayor of Tempe, Mark Mitchel, was also on hand to share with the audience the strong impact that the park and ASU have had on the city and how the ASU Research Park is a true university-city initiative. In fact, Mr. Mitchel’s father, Harry Mitchel, was the mayor of Tempe thirty years ago and was one of the visionaries that helped make the park happen.  

ASURP-30th-AirView
This aerial view, taken a few months ago, shows the new GoDaddy tech center being built in the lower right hand corner. The PADT innovation center is the upside-down check mark in the upper right corner.  PADT customers ViaSat and Amkor are both starting construction in the park right now.

To learn more, read the official press release: ASU Research Park Celebrates 30 Years – Press Release, or visit the park’s website: asuresearchpark.com.

The PADT Hat Visits ASU’s Formula SAE Team

PADT was honored to be invited to come out and see the Formula SAE car that Arizona State University has been working on as part of their Press Day at the Bondurant School of High Performance Driving.  The PADT Hat came along and got a picture:

ASU-Formula-SAE

We helped out the team last year by printing them an intake manifold and by offering some assistance to the Aero design team.  It was a very nice design and in their first year of competition, they came in 24th out of 80 teams.DSC09593

Congratulations to all the students involved and we are looking forward to working with them in the coming season.