All Things Ansys 092: Recap of Ansys 2021 R1 & Beyond

 

Published on: July 12th, 2021
With: Eric Miller, Tom Chadwick, Aleksandr Gafarov, Joe Woodward, Ted Harris, Doug Oatis & Josh Stout
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by members of the simulation support team to recap Ansys 2021 R1 and discuss expectations and predictions for 2021 R2.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Welcome to a New Era in Electronics Reliability Simulation

Simulation itself is no longer a new concept in engineering, but individual fields, applications, and physics are continually improved upon and integrated into the toolbox that is an engineer’s arsenal. Many times, these are incremental additions to a particular solver’s capabilities or a more specialized method of post processing, however this can also occasionally be present through new cross-connections between separate tools or even an entirely new piece of software. As a result of all this, Ansys has now reached critical mass for its solution space surrounding Electronics Reliability. That is, we can essentially approach an electronics reliability problem from any major physics perspective that we like.

So, what is Electronics Reliability and what physics am I referring to? Great question, and I’m glad you asked – I’d like to run through some examples of each physics and their typical use-case / importance, as well as where Ansys fits in. Of course, real life is a convoluted Multiphysics problem in most cases, so having the capability to accommodate and link many different physics together is also an important piece of this puzzle.

Running down the list, we should perhaps start with the most obvious category given the name – Electrical Reliability. In a broad sense, this encompasses all things related to electromagnetic fields as they pertain to transmission of both power and signals. While the electrical side of this topic is not typically in my wheelhouse, it is relatively straightforward to understand the basics around a couple key concepts, Power Integrity and Signal Integrity.

Power integrity, as its name suggests, is the idea that we need to maintain certain standards of quality for the electrical power in a device/board/system. While some kinds of electronics are robust enough that they will continue to function even under large variations in supplied voltage or current, there are also many that rely on extremely regular power supplies that only vary above certain limits or within narrow bounds. Even if we’re looking at a single PCB (as in the image below), in today’s technological environment it will no doubt have electrical traces mapped all throughout it as well as multiple devices present that operate under their own specified electrical conditions.

Figure 1: An example PCB with complex trace and via layouts, courtesy of Ansys

If we were determined to do so, we could certainly measure trace lengths, widths, thicknesses, etc., and make some educated guesses for the resulting voltage drops to individual components. However, considerably more effort would need to be made to account for bends, corners, or variable widths, and that would still completely neglect any environmental effects or potential interactions between traces. It is much better to be able to represent and solve for the entire geometry at once using a dedicated field solver – this is where Ansys SIwave or Ansys HFSS typically come in, giving us the flexibility to accurately determine the electrical reliability, whether we’re talking about AC or DC power sources.

Signal integrity is very much related, except that “signals” in this context often involve different pathways, less energy, and a different set of regulations and tolerances. Common applications involve Chip-signal modeling and DDRx virtual compliance – these have to do with not only the previous general concerns regarding stability and reliability, but also adherence to specific standards (JEDEC) through virtual compliance tests. After all, inductive electromagnetic effects can still occur over nonconductive gaps, and this can be a significant source of noise and instability in cases where conductive paths (like board traces or external connections) cross or run very near each other.

Figure 2: Example use-cases in virtual compliance testing, courtesy of Ansys

Whether we are looking at timings between components, transition times, jitter, or even just noise, HFSS and SIWave can both play roles here. In either case, being able to use a simulation environment to confirm that a certain design will or will not meet certain standards can provide invaluable feedback to the design process.

Other relevant topics to Electrical Reliability may include Electromagnetic Interference (EMI) analysis, antenna performance, and Electrostatic Discharge (ESD) analysis. While I will not expand on these in great detail here, I think it is enough to realize that an excellent electrical design (such as for an antenna) requires some awareness of the operational environment. For instance, we might want to ensure that our chosen or designed component will adequately function while in the presence of some radiation environment, or maybe we would like to test the effectiveness of the environmental shielding on a region of our board. Maybe, there is some concern about the propagation of an ESD through a PCB, and we would like to see how vulnerable certain components are. Ansys tools provide us the capabilities needed to do all of this.

The second area of primary interest is Thermal Reliability, as just about anyone who has worked with or even used electronics knows, they generate some amount of heat while in use. Of course, the quantity, density, and distribution of that heat can vary tremendously depending on the exact device or system under question, but this heat will ultimately result in a rise in temperature somewhere. The point of thermal reliability basically boils down to realizing that the performance and function of many electrical components depends on their temperature. Whether it is simply a matter of accounting for a change in electrical conductivity as temperature rises or a hard limit of functionality for a particular transistor at 150 °C, acknowledging and accounting for these thermal effects is critical when considering electronics reliability. This is a problem with several potential solutions depending on the scale of interest, but generally we cover the package/chip, board, and full system levels. For the component/chip level, a designer will often want to provide some package level specs for OEMs so that a component can be properly scoped in a larger design. Ansys Icepak has toolkits available to help with this process; whether it is simplifying a 3D package down to a detailed network thermal model or identifying the most critical hot spot within a package based on a particular heat distribution. Typically, network models are generated through temperature measurements taken from a sample in a standardized JEDEC test chamber, but Icepak can assist through automatically generating these test environments, as below, and then using simulation results to extract well defined JB and JC values for the package under test.

Figure 3: Automatically generated JEDEC test chambers created by Ansys Icepak, courtesy of Ansys

On the PCB level of detail, we are likely interested in how heat moves across the entire board from component to component or out to the environment. Ansys Icepak lets us read in a detailed ECAD description for said PCB and process its trace and via definitions into an accurate thermal conductivity map that will improve our simulation accuracy. After all, two boards with identical sizing and different copper trace layouts may conduct heat very differently from each other.

Figure 4: Converting ECAD information into thermal conductivity maps using Ansys Icepak, courtesy of Ansys

On the system level of thermal reliability, we are likely looking at the effectiveness of a particular cooling solution on our electronic design. Icepak makes it easy to include the effects of a heat exchanger (like a coldplate) without having to explicitly model its computationally expensive geometry by using a flow network model. Also, many of today’s electronics are expected to constantly run right up against their limit and are kept within thermal spec by using software to throttle their input power in conjunction with an existing cooling strategy. We can use Icepak to implement and test these dynamic thermal management algorithms so that we can track and evaluate their performance across a range of environmental conditions.

The next topic that we should consider is that of Mechanical Reliability. Mechanical concepts tend to be a little more intuitive and relatable due to their more hands-on nature than the other two, though the exact details behind the cause and significance of stresses in materials is of course more involved. In the most general sense, stress is a result of applying force to an object. If this stress is high compared to what is allowed by a material, then bad things tend to happen – like permanent deformation or fracture. For electronic devices consisting of many materials, small structures, and particularly delicate components, we have once again surpassed what can be reasonably accomplished with hand calculations. Whether we are looking at an individual package, the integrity of an entire PCB, or the stability that a rigid housing will provide to a set of PCBs, Ansys has a solution. We might use Ansys Mechanical to look at manufacturing allowances for the permissible force used while mounting a complicated leaded component onto a board, as seen below. Or maybe, we will use mechanical simulation to find the optimal positioning of leads on a new package such that its natural vibrational frequencies are outside normal ambient conditions.

Figure 5: A surface component with discretely modeled leads, courtesy of Ansys

At the PCB level, we face many of the same detail-oriented challenges around representing traces and vias that have been mentioned for the electrical applications. They may not be quite as critical and more easily approximated in some ways, but that does not change the fact that copper traces are mechanically quite different from the resin composites often used as the substrate (like FR-4). Ansys tools like Sherlock provide best in class PCB modeling on this front, allowing us to directly bring in ECAD models with full trace and component detail, and then model them mechanically at several different levels depending on the exact need. Automating a materials property averaging scheme based on the local density of traces may be sufficient if we are looking at the general bending behavior of a board, but we can take it to the next level by explicitly modeling traces as “reinforcement” elements. This brings us to the level of detail where we can much more reliably look at the stresses present in individual traces, such that we can make good design decisions to reduce the risk of traces peeling or delaminating from the surface.

Figure 6: Example trace mapping workflow and methods, courtesy of Ansys

Beyond just looking at possible improvements in the design process, we can also make use of Ansys tools like LS-DYNA or Mechanical to replicate testing or accident conditions that an existing design could be subjected to. As a real-world example, many of us are all too familiar with the occasional consequences of accidentally dropping our smart phones – Ansys is used to test designs against these kind of shock events, where impact against a hard surface can result in high stresses in key locations. This helps us understand where to reinforce a design to protect against the worst damage or even what angle of impact is most likely to cause an operational failure.

As the finale for all of this, I come back to the first comment of reality being a complex Multiphysics problem. Many of the previous topics are not truly isolated to their respective physics (as much as we often simplify them as such), and this is one of the big ways in which the Ansys ecosystem shines: Comprehensive Multiphysics. For the topic of thermal reliability, I simply stated that electronics give off heat. This may be obvious, but that heat is not just a magical result of the device being turned on but is instead a physical and calculable result of the actual electrical behavior. Indeed, this the exact kind of result that we can extract from one of the relevant electronics tools. An HFSS solution will provide us with not only the electrical performance of an antenna but also the three-dimensional distribution of heat that is consequently produced. Ansys lets us very easily feed this information into an Icepak simulation, which then has the ability to give us far more accurate results than a typical uniform heat load assumption provides.

Figure 7: Coupled electrical-thermal simulation between HFSS and Icepak, courtesy of Ansys

If we find that our temperatures are particularly high, we might then decide to bring these results back into HFSS to locally change material properties as a function of temperature to get an even more accurate set of electrical results. It could be that this results in an appreciable shift in our antenna’s frequency, or perhaps the efficiency has decreased, and aspects of the design need to be revisited. These are some of the things that we would likely miss without a comprehensive Multiphysics environment.

On a more mechanical side, the effects on stress and strain from thermal conditions are very well known and understood at this point, but there is no reason we could not use Ansys to bring the electrical alongside this established thermal-mechanical behavior. After all, what is a better representation of the real physics involved than using SIwave or HFSS to model the electrical behavior of a PCB, bringing those result into an Icepak simulation as a heat load to test the performance of a cooling loop or heat sink, and then using at least some of those thermal results to look at stresses through not only a PCB as a whole but also individual traces? Not a whole lot at this moment in time, I would say.

The extension that we can make on these examples, is that they have by and large been representative cases of how an electronics device responds to a particular event or condition and judging its reliability metrics based on that set of results, however many physics might be involved. There is one more piece of the puzzle we have access to that also interweaves itself throughout the Multiphysics domain and that is Reliability Physics. This is mostly relevant to us in electronics reliability for considering how different events, or even just a repetition of the same event, can stack together and accumulate to contribute towards some failure in the future. An easy example of this is a plastic hinge or clip that you might find on any number of inexpensive products – flexing a thin piece of plastic like in these hinges can provide a very convenient method of motion for quite some time, but that hinge will gradually accumulate damage until it inevitably cracks and fails. Every connection within a PCB is susceptible to this same kind of behavior, whether it is the laminations of the PCB itself, the components soldered to the surface, or even the individual leads on a component. If our PCB is mounted on the control board of a bus, satellite, or boat, there will be some vibrations and thermal cycles associated with its life. A single one of these events may be of much smaller magnitude and seemingly negligible compared to something dramatic like a drop test, and yet they can still add up to the point of being significant over a period of months or years.

This is exactly the kind of thing that Ansys Sherlock proves invaluable for: letting us define and track the effect of events that may occur over a PCB’s entire lifecycle. Many of these will revolve around mechanical concepts of fatigue accumulating as a result of material stresses, but it is still important to consider the potential Multiphysics origins of stress. Different simulations will be required for each of mechanical bending during assembly, vibration during transport, and thermal cycling during operation, yet each of these contributes towards the final objective of electronics reliability. Sherlock will bring each of these and more together in a clear description of which components on a board are most likely to fail, how likely they are to fail as a function of time, and which life events are the most impactful.

Figure 8: Example failure predictions over the life cycle of a PCB using Ansys Sherlock, courtesy of Ansys

Really, what all of this comes down to is that when we design and create products, we generally want to make sure that they function in the way that we intend them to. This might be due to a personal pride in our profession or even just the desire to maximize profit through minimizing the costs associated with a component failure, however at the end it just makes sense to anticipate and try to prevent the failures that might occur under normal operating conditions.

For complex problems like electronics devices, there are many physics all intimately tied together in the consideration of overall reliability, but the Ansys ecosystem of tools allows us to approach these problems in a realistic way. Whether we’re looking at the electrical reliability of a circuit or antenna, the thermal performance of a cooling solution or algorithm, or the mechanical resilience of a PCB mounted on a bracket, Ansys provides a path forward.

If you have any questions or would like to learn more, please contact us at info@padtinc.com or visit www.padtinc.com.

All Things Ansys 090: Simulating Predictive Lung Modeling in a Rapidly Evolving COVID World

 

Published on: June 14th, 2021
With: Eric Miller & Jacob Riglin
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Jacob Riglin from Los Alamos National Laboratory to discuss simulation’s role in predictive lung modeling and experimentation in a rapidly evolving COVID world.

Learn how Los Alamos used Ansys CFX to predict turbulence and flow structure through the lungs and analyze the impact COVID has on it, as well as patient response to various ventilators.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things Ansys 089: Design for Autonomous Robotics

 

Published on: June 1st, 2021
With: Eric Miller & Jonathan Byars
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Jonathan Byars of AMP Robotics to discuss their recent presentation at Ansys Simulation World 2021, covering how Ansys mechanical aids in the design of quick release gripper mechanisms for autonomous material recycling robots.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things Ansys 088: Taking Simulation To The Moon

 

Published on: May 17th, 2021
With: Eric Miller, Tyler Smith & Connor Nail
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Tyler Smith and Connor Nail from the ASU Luminosity Lab to talk about their recent presentation at Ansys Simulation World 2021. A team of students at the ASU Luminosity Lab was awarded funding from NASA to develop a system for exploration of the permanently shadowed regions of the lunar poles.

Through this project titled VELOS (Variable Exploratory Lunar Observation System) the team designed, built, and conducted proof-of-concept testing to successfully validate operation of their prototype system. Learn how Ansys helped make their success possible.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things Ansys 087: Introducing Rocky DEM – The latest in 3D Discrete Element Modeling Technology

 

Published on: May 3rd, 2021
With: Eric Miller, Robert McCathren, Ahmad Haidari & Marcus Reis
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Application Engineer, Robert McCathren, as well as Ahmad Haidari – Senior Director of Strategy & Business Development at Rocky DEM, and Marcus Reis – VP of Sales, Support & Marketing at Rocky DEM to discuss the company’s partnership with Ansys and what their tool is capable of.

Rocky is a powerful 3D Discrete Element Modeling (DEM) Particle Simulation Software that quickly and accurately simulates the flow behavior of bulk materials with complex particle shapes and size distributions, for typical applications such as conveyor chutes, mills, mixers, and other materials handling equipment.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

The State of Mechanical Meshing in Ansys 2021 R1 – Webinar

Meshing is an integral part of the engineering simulation process where complex geometries are divided into simple elements that can be used as discrete local approximations of the larger domain. The mesh influences the accuracy, convergence and speed of the simulation. Furthermore, since meshing typically consumes a significant portion of the time it takes to get simulation results, the better and more automated the meshing tools, the faster and more accurate the solution.

Ansys provides general purpose, high-performance, automated, intelligent meshing software which produces the most appropriate mesh for accurate, efficient multiphysics solutions — from easy, automatic meshing to highly crafted mesh. 

Join PADT’s Senior Mechanical Engineer and meshing expert Joe Woodward for an introduction to the new meshing capabilities available in Ansys 2021 R1, including updates for: 

• Repairing Topology

• Weld Control

• Separating Morphing Adaptive Remeshing Technology (SMART)

• Batch Connections

• And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things Ansys 079: The State of Simulation for Additive Manufacturing

 

Published on: January 11th, 2021
With: Eric Miller & Brent Stucker
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Brent Stucker, the Director of Additive Manufacturing at Ansys to discuss the innovative capabilities of the Ansys additive suite of tools and it’s impact on the effectiveness of 3D printing for manufacturing and design.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Introducing Level Up – An Ansys Mechanical Virtual Conference

PADT & Ansys are excited to announce Level Up with Ansys Mechanical, a free virtual technical conference on Wednesday, December 2, 2020 at 10 a.m. EST.

For the past 50 years, Ansys Mechanical continues to be the go-to finite element analysis platform for structural analysis, and they’re just getting warmed up. Join visionary Ansys product development, product management and engineering leaders as they provide expert insights on Mechanical’s technology advances and preview the platform’s future.

From those engineers looking to boot up their simulation experience to those seeking to step up their simulation skills, and even those operating in “beast mode”, who execute large and complex workflows, this action-packed event showcases how Mechanical radically transforms product design.

Highlights include: 

  • Learn the latest with scripting and automation to save valuable time
  • Discover how to lightweight product designs with structural optimization methods
  • Understand how to couple multiple physics to assess performance in the real world
  • And so much more

Catch the thought-provoking plenary presentation, engage with Ansys’ brightest during the live Q&A, and interact with fellow engineers during live polls. 

Register Here

Optical System Design & Disruption in Ansys SPEOS 2020 R2 – Webinar

When customers evaluate products, the overall look and details can make all the difference. Ansys physics-based imaging, photonics and illumination software streamlines the design process, so you can better understand how your product will look and operate under real-world lighting and usage conditions.

Whether you are designing a TV screen, street lighting network, smart headlight, head-up display or interior mood lighting in an automobile, Ansys optical simulation software helps you make your design more efficient and appealing. Optical sensors are the eyes of any intelligent system, and Ansys physics-based simulations can help you assess raw signals from camera and lidar systems in their operating environments.

Ansys 2020 R2 empowers Ansys SPEOS users to go further than ever before with enhancements that improve the handling of complex sensors, project preview and computation.

Enhancements include:

 •  Highly accurate camera models drastically improve camera simulation experience 

•  Faster simulation times when using light sources and provides nearly real-time review 

•  4X faster simulation setup thanks to optimized GUI

Join PADT’s Application Engineer Robert McCathren for a first hand look at the capabilities of optical simulation, followed by what’s available for SPEOS in the Ansys 2020 R2 update.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things Ansys 069: Fluent Updates in Ansys 2020 R2

 

Published on: August 10th, 2020
With: Eric Miller & Sina Ghods
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Senior Application Engineer, Sina Ghods for a discussion on what’s new and their favorite features in the 2020 R2 update for Ansys Fluent.

Known for delivering the most accurate solutions in the industry without compromise, Ansys continues to provide cutting-edge advancements with each new release. In 2020 R2 users can learn about updates from pre-processing to new physics models and workflow improvements.

If you would like to learn more about this update, you can view Sina’s webinar on the topic here: https://www.brighttalk.com/webcast/15747/427082

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things Ansys 068: Mechanical Updates in Ansys 2020 R2

 

Published on: July 27th, 2020
With: Eric Miller & Joe Woodward
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Joe Woodward, Senior Mechanical Engineer & Lead Trainer at PADT for a discussion on what is new in the 2020 R2 release of Ansys Mechanical, along with a look at their favorite features.

If you would like to learn more about this topic, you can view PADT’s webinar covering the release here: https://www.brighttalk.com/webcast/15747/422824

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things Ansys 066: Simulation Automation & Optimization management with Ansys optiSLang

 

Published on: June 29th, 2020
With: Eric Miller & Josh Stout
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s systems application & support engineer Josh Stout to look at the optimization tool optiSLang. This tool helps automate simulation and optimization activities across various solution areas, such as autonomy, electrification, digital twins, and more, as well as how it enables users to capitalize on the benefits of enterprise simulation management.

If you would like to learn more, you can view the product brochure here: https://www.ansys.com/-/media/ansys/corporate/resourcelibrary/brochure/optislang-brochure.pdf.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things Ansys 063: Fighting COVID-19 with Ansys Simulation

 

Published on: May 18th, 2020
With: Eric Miller, Thierry Marchal & Marc Horner
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by two leaders in the Ansys response to COVID-19 – Thierry Marchal, Global Industry Director for Healthcare, Consumer Products & Construction, and Marc Horner, Principal Healthcare Engineer – for a discussion on what the company is doing to combat the spread of the virus, as well as give our listeners a more complete understanding regarding the specific applications that Ansys tools are being used for during this global pandemic.

If you would like to learn more about Ansys and their response to COVID-19, check out the following link: https://bit.ly/36bs8rR

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS