Mechanical Updates in Ansys 2021 R2 pt. 3: nCode, Linear Dynamics & Acoustics – Webinar

Ansys Mechanical delivers features to enable easier workflows, analysis, scripting and product integrations that offer more complex solver capabilities. 

With the Ansys suite of tools, engineers can perform finite element analyses (FEA), customize and automate solutions for structural mechanics challenges and analyze multiple physics scenarios. By implementing this software into a manufacturing workflow, users can save money and time while ensuring their product meets the innovative requirements they have setup.

Join PADT’s Senior mechanical engineer & lead trainer Joe Woodward to discover the new features that have been added to Ansys Mechanical in PADT’s final webinar covering the 2021 R2 Mechanical release.

Highlights include nCode design capabilities, linear dynamics, acoustics, and explicit dynamics among many others.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Ansys – Software for Electric Machine Design

The electric propulsion system has drawn more and more attention in the last decade. There has been a lot of development of the electric machines which are used in automotive and aerospace. It is essential for engineers to develop electric machines with high efficiency, high power-density, low noise and cost.

Therefore, simulation tools are needed to design the electric machines that can meet the requirement. The product launching time can be reduced significantly with the help of the simulation tools. The design process of electric machine involves the area of Electromagnetics, Mechanical, Thermal and Fluids. This makes Ansys the perfect tool for designing electric machines as it is a multi-physics simulation platform. Ansys offers a complete workflow from electromagnetics to thermal and mechanical which provides accurate and robust designs for electric machines.

To design high performance, more compact and reliable electric machines, design engineers can start with three Ansys tools: RMxprt, Maxwell and Motor-CAD. The capabilities and differences of these three tools will be compared and discussed.

1. Ansys RMxprt

Ansys RMxprt is a template-based tool for electromagnetic designs of electric machines. It covers almost all of the conventional radial types of electric machines. Starting from Ansys 2020R2, some axial types have also been included in RMxprt (IM, PMSM, BLDC).

Fig. 1. Electric machine types in Ansys RMxprt.

Users only need to input the geometry parameters and materials for the machines. The performance data and curves can be obtained for different load types. Since RMxprt uses analytical approaches, it can generate results very fast. It is also capable of running fast coupling/system simulations with Simplorer/Twin Builder. Ready-to-run Maxwell 2D/3D models can be created directly from RMxprt automatically.

2. Ansys Maxwell

Ansys Maxwell is a FEA simulation tool for low-frequency electromagnetic applications. Maxwell can solve static, frequency-domain and time-varying electromagnetic and electric fields. The Maxwell applications can be but not limited to electric machines, transformers, sensors, wireless charging, busbars, biomedical, etc.

Unlike RMxprt which uses analytical method, Maxwell uses the FEA approach which allows it to do high accuracy field simulations. Engineers can either import the geometry or create their own models in Maxwell. Therefore, there is no limit of types of machines that can be modeled in Maxwell. It can model all types of electromagnetic rotary devices such as multi-rotor and multi-stator designs.

Fig. 2. Electric machine detailed model in Ansys Maxwell.

Maxwell can do more detailed electromagnetic simulations for electric machines, for example, the demagnetization of the permanent magnets, end winding simulations and magnetostrictive effects. With Maxwell, engineers are able to run parametric sweep for different design variables and to do optimizations to achieve the optimal design. Maxwell is also capable of creating equivalent circuit extraction (ECE) models. The ECE is one of the reduced order modelling (ROM) techniques, which automatically generates an efficient system-level model. There are several Ansys customization toolkit (ACT) available for Maxwell to quickly create efficiency map and simulate impact of eccentricity. Furthermore, Maxwell can be coupled with Ansys Mechanical/Fluent/Icepak to do thermal and mechanical analysis.

3. Ansys Motor-CAD

Ansys Motor-CAD is suitable to make design decisions in early design phase of electric machines. It includes four modules: electromagnetic, thermal, lab and mechanical. Motor-CAD can perform multiphysics simulations of electric machines across the full torque-speed range. Motor-CAD uses a combination of analytical method and FEA, and it can quickly evaluate motor topologies and optimize designs in terms of performance, efficiency and size.

Motor-CAD is capable of simulating the radial types of electric machines. With its lab module, it can do the duty cycle simulations to analyze electromagnetic, mechanical and thermal performances of electric machines. The thermal module is a standard tool in industry which can provide fast thermal analysis with insight of each thermal node, pressure drop, losses. Motor-CAD mechanical module uses 2D FEA to calculate the stress and deformation. Engineers can also manually correlate the models in Motor-CAD based on the manufacturing impacts or testing data.

Fig. 3. Ansys Motor-CAD GUI and machine types.

Motor-CAD can provide links to Ansys Maxwell, Mechanical, Icepak and Fluent for more detailed analysis in the later phases of motor designs.

  • What to use?

RMxprt and Motor-CAD both can handle most of the radial types of electric machines. RMxprt can also model some conventional axial flux machines. RMxprt can purely model the electromagnetic performance of the machines, while Motor-CAD can simulate electromagnetic, thermal and mechanical performances.

Maxwell can simulate any types of machines (radial, axial, linear, hybrid, etc.) as it can import or draw any geometry. Both static and transient analysis can be conducted in Maxwell.

  • When to use?

RMxprt and Motor-CAD are most suitable in the early design stages of the electric machines. Engineers can get fast results about the machine performance and sizing which can be used as a guideline in the later design phase.

Maxwell can be used in the early design stages for more advanced types of electric machines as well. Maxwell is also capable of doing more detailed electromagnetic designs in the later stage and can be used to do system-level transient-transient co-simulation (coupled with Ansys Simplorer/Twin Builder). More detailed geometries, advanced materials and complex electromagnetic phenomenon can be modeled in Maxwell. In the final stages of running more advanced CFD and NVH analysis, Maxwell can be linked with Ansys Fluent/Icepak/Mechanical to ensure the design robustness of the machines before going into prototyping/production.

  • Who can benefit?

RMxprt and Motor-CAD do not require strong FEA simulation skills as no boundary conditions or solution domain need to be set. Engineers with basic knowledge of electric machines can get familiar with the tools and get results very quickly.

Maxwell requires users to setup the mesh, boundary and excitations as it uses the FEA method. Engineers will need to acquire not only the basic concepts of machines but also some FEA simulation skills in order to get more reasonable results.

Summary

RMxprt: It is a template-based tool for initial electric machine designs which uses analytical analysis approach.

Maxwell: It uses FEA approach model both 2D and 3D models. It is capable of simulating either simple or mode advanced electromagnetics in electric machines.

Motor-CAD: It is suitable for initial machine designs which uses analytical and FEA methods. It can do electromagnetic, thermal and initial mechanical analysis.

If you would like more information related to this topic or have any questions, please reach out to us at info@padtinc.com.

Press Release: Ansys Elite Channel Partner and Stratasys Diamond Channel Partner, PADT Announces Jim Sanford as Vice President of Sales & Support

The Sales and Support team at PADT is the group that most of PADT’s customers interface with. They sell world-leading products from Ansys, Stratasys, and Flownex and then provide award-winning support long after the initial purpose. The team has grown over the years and has plans for even more growth. To help make that happen, we are honored to have Jim Sanford join the PADT family as the Vice President of our Sales & Support team.

Many of our customers and partners know Jim from his time with industry leaders Siemens, MSC, Dassault Systems, and NextLabs, Inc. He brings that experience and his background as a mechanical engineer before he entered sales, to focus PADT on our next phase of growth. He also fit well in PADT’s culture of customer focused, technical driven sales and support.

Our customers have a choice of who they purchase their Ansys multiphysics simulation, Stratasys 3D Printers, and Flownex system simulation software from, and who delivers their frontline support. We know with Jim leading the team, even more companies will make the choice to be part of the PADT family.

The official press release has more details, and can be found at these links or in the test below.

Press Release: PDF | HTML

Want to have a conversation about your Simulation or 3D Printing situation? Contact PADT now and one of our profesionals will be happy to help.


Ansys Elite Channel Partner and Stratasys Diamond Channel Partner, PADT Announces Jim Sanford as Vice President of Sales & Support

Sanford Brings a Wide Range of High-Profile Leadership Experience Across Technology and Aerospace and Defense Sectors to his New Position

TEMPE, Ariz., February 11, 2021 PADT, a globally recognized provider of numerical simulation, product development, and 3D printing products and services, today announced the addition of Jim Sanford as vice president of the company’s Sales & Support department. In his new position, Sanford is responsible for leading the increase of sales and customer support for a range of best-in-class simulation and additive manufacturing solutions. Sanford reports to Ward Rand, co-founder and principal, PADT.

“In the last few years, PADT has expanded across the Southwest, adding new expertise and technologies to our product and service offerings,” said Rand. “Jim is a valuable addition to the team and will be instrumental in sustaining PADT’s growth across the region. His leadership, experience, and knowledge of the industry will allow us to increase the pace of expansion and bring our solutions to serve new and existing customers in deeper and more impactful ways to their businesses.”

After a comprehensive search, Sanford proved to be the most experienced and capable leader to take on the vice president role. He will focus on providing visionary guidance, strategy, and tactical direction to the department. His responsibilities include refining the company’s sales team structure, recruiting, hiring, training, managing for profitable growth, and leading the support team to ensure an optimal customer experience for their use of Ansys, Stratasys, and Flownex products.

Prior to joining PADT, Sanford held business development and engineering positions in a diverse range of aerospace and defense, modeling and simulation, and software companies. His 30-year career span includes executive leadership roles at Siemens, MSC, and Dassault. Most recently he served as the VP for NextLabs Inc., a leading provider of policy-driven information risk management software for large enterprises, and the VP of Business Development for Long Range Services, where he was engaged in the development and testing of various classified items for the U.S. Department of Defense. He holds a bachelor’s degree in Mechanical Engineering from the University of Arizona, with emphasis in materials science and physics.

“PADT is a well-respected brand well-known for its product knowledge, customer-centric approach, and expertise,” said Sanford. “My career has been defined by my ability to take technology-focused companies to the next level of success, and I’m thrilled to join PADT and help continue its expansion by supporting highly innovative customers.”

PADT currently sells and supports the entire Ansys product line in Arizona, California, Colorado, Nevada, New Mexico, Texas, and Utah as an Ansys Elite Channel Partner. They also represent all Stratasys products in Arizona, Colorado, New Mexico, Texas, and Utah as a Diamond Channel Partner and are the North American distributor for Flownex.

To learn more about Sanford and PADT’s products and services, please visit https://www.padtinc.com/products/

About PADT

PADT is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 90 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Optimizing Electronics Reliability with Ansys Sherlock – Webinar

Ansys Sherlock automated design analysis software is the only Reliability Physics/Physics of Failure (PoF)-based electronics design analysis software that provides fast and accurate life predictions for electronic hardware at the component, board and system levels in early design stages. A unique, powerful capability of Sherlock is its revolutionary ability to rapidly convert electronic CAD (ECAD) files into CFD and FEA models with accurate geometries and material properties.

Through its powerful parsing engine and embedded libraries containing over 500,000 parts, Sherlock reduces pre-processing time from days to minutes and automates workflows through its integration with Ansys Icepak, Ansys Mechanical and Ansys Workbench.

With its extensive parts/materials libraries, Sherlock automatically identifies your files and imports your parts list, then builds an FEA model of your circuit board in minutes. It also produces a holistic analysis that is critical to developing reliable electronics products. It enables designers to simulate each environment, failure mechanism and assembly that a product might encounter over its lifespan.

Join PADT’s Systems Application & Support Engineer Josh Stout for an introduction to this powerful tool along with a look at what new features and updates have been added in the Ansys 2020 R2 version.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Mechanical Updates in Ansys 2020 R2 – Webinar

From designers and occasional users looking for quick, easy and accurate results, to experts looking to model complex materials, large assemblies and nonlinear behavior, Ansys has you covered. The intuitive interface of Ansys Mechanical enables engineers of all levels to get answers fast and with confidence. Ansys structural analysis software is used across industries to help engineers optimize their product designs and reduce the costs of physical testing.

Ansys Mechanical is the flagship mechanical engineering software solution that uses finite element analysis (FEA) for structural analysis.It covers an enormous range of applications and comes complete with everything you need from geometry preparation to optimization and all the steps in between. With Mechanical Enterprise you can model advanced materials, complex environmental loadings and industry-specific requirements in areas such as offshore hydrodynamics and layered composite materials.

In this webinar, PADT’s Senior Mechanical Engineer & Lead Trainer, Joe Woodward will cover a few key components of this tool and what is newly available for them in Ansys 2020 R2. This includes updates for:

– Mechanical Core

– Mechanical Graphics/Post Processing

– Linear Dynamics

– SMART Fracture

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Designing Better Rocket Engines with Ansys – Webinar

In 2017 Colorado based company Ursa Major Technologies put together an expert team of designers and engineers to realize its vision of providing the microsatellite industry with the best rocket engines in the business. Utilizing Ansys simulation software, additive manufacturing, and modernizing staged combustion, the company successfully designed and built two liquid oxygen and kerosene engines and has a third engine in development.

With Ansys, Ursa Major Technologies is accomplishing design goals faster and more efficiently than ever before. Using Finite Element Analysis (FEA), the company can run models with 30-40 unique parts to analyze entire turbo pumps in one simulation. Thrust analysis, which the company had previously done with 2D models, can now be done all in the Ansys CFX tool more cost-effectively.

Join PADT and Ursa Major Technologies for a brief overview of applications for Ansys in the aerospace industry, followed by an exploration of how they are using these simulation tools to better design and optimize the next generation of rocket engines.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Mechanical Updates in ANSYS 2019 R2 – Webinar

With ANSYS structural analysis software, users are able to solve more complex engineering problems, faster and more efficiently than ever before. Customization and automation of structural solutions is much easier to optimize thanks to new and innovative finite element analysis (FEA) tools available in this product suite. 

Once again, ANSYS is able to cement their role as industry leaders when it comes to usability, productivity, and reliability; adding innovative functionality to an already groundbreaking product offering. ANSYS structural analysis software continues to be used throughout the industry, and for good reason as it enables engineers to optimize their product design and reduce the costs of physical testing. 

Join PADT’s Specialist Mechanical Engineer Joe Woodward, for an in-depth look at what’s new in the latest version of ANSYS Mechanical, including updates regarding: 

  • Software User Interface
  • Topology Optimization
  • Rigid Body Dynamics
  • Post Processing
  • And much more
Natural frequency study of engine block in ANSYS Mechanical

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Automating Subsea Design (or How I Learned to Love Parameters)

In a previous life, I worked in the maritime and offshore energy industries and used ANSYS as part of my daily routine in structural design. I eventually discovered myself in a position where I was designing subsea equipment for use in offshore oil and gas fields. One thing I quickly discovered was that although subsea structures tend to be fairly simplistic looking (think playground equipment…but 10000 feet underwater) there are multiple design factors that can easily cause a domino effect that would require redesign(s). Whether it was a change brought upon by the client, tool manufacturer, or to satisfy the whims of marine warranty companies, there was always a need to evaluate multiple variants of any subsea structure.

Sounds like a very reactive process, right? So how can we bring this process into a more streamlined analysis workflow within ANSYS? Just use parameters with SpaceClaim and ANSYS Mechanical!

So what can parameters do to aid in this process?

  • Remove repetitive tasks
  • Account for geometric changes to CAD models
  • Use a range of values for material properties
  • Create associative connections between CAD models and ANSYS results
  • Allow for automatic goal driven design exploration

Now let’s look at some common use cases for parameters that I’ve run into in the past:

Accelerations for Onboard Equipment and Cargo

Cargo transported on the ocean is subject to the same accelerations that affect the vessel transporting it (surge, sway, heave, pitch, roll, and yaw). These accelerations are then combined into three representative accelerations and applied in multiple loadcases.

Typically, these loadcases are resolved in independent analysis systems but we can remove all that fluff with a simple parameter driven analysis. All one has to do is tag inputs and result items as parameters and then input values for each load case (or Design Point). In this case I have selected the XYZ components of an acceleration input applied to a mass point as well as the total deformation and maximum equivalent stress. With the push of a button ANSYS will then solve all of these design points and will amend the table to show the selected results corresponding with each design point. Results from the Design Points can be uploaded individually but this parametric analysis has made it very easy for us to determine which Design Points / load cases have the greatest influence on the design.

Geometry Influence Study

So one of the questions often asked during the design process is “Will the design work after we change this dimension to compensate for X?” which is often followed by a discussion on robustness (which is then followed by a change order). So let’s skip the discussion middle-man and move to be proactive by using parameters to quantify just how much we can change our geometry before a problem arises.

Here we have an example subsea Pipeline End Termination (PLET) structure and let’s say a client has asked us to verify if this design can work for various pipeline sizes. The PLET has some major parts that can be influenced by this change: The pipeline clamp, cradle, flanges, ball valve, and bulkhead.

Because we can use parameters there’s no need to make a new model. Merely tag items you wish to create parameters for in SpaceClaim:

Then ANSYS Workbench will start to populate its parameter tables accordingly:

We can then make certain parameters dependent on others, or define them via simple expressions. In this way we can enforce clearances and relations between the various bodies in our model.

From here all we have to do is define our variables for our future analyses:

Then tell ANSYS to solve all the design points with a single click. Note that users can create charts and tables before the solve and ANSYS will populate these live during the solution process. Individual design point results and geometries can also be reviewed at any time.

For this particular analysis we provided the same load to each Design Point but a good next step would be to set a goal driven analysis and have a range of loadings on the pipeline end of the PLET to represent various installation conditions.

Parameters are a very powerful tool within the ANSYS toolbox. They can remove repetitive tasks within FEA, easily create loadcases, and address concerns about design robustness by letting ANSYS and SpaceClaim handle CAD model rework.

That’s it for this blog post! I’ll be creating a few offshore industry-specific posts in the future as well so stay tuned!

Optimize Product Performance with ANSYS Digital Twins – Webinar

Engineering simulation has traditionally been used for new product design and virtual testing, eliminating the need to build multiple prototypes prior to product launch.

Now, with the emergence of the Industrial Internet of Things (IIoT), simulation is expanding into operations. The IIoT enables engineers to communicate with sensors and actuators on an operating product to capture data and monitor operating parameters. The result is a digital twin of the physical product or process that can be used to monitor real-time prescriptive analytics and test predictive maintenance to optimize asset performance.

Join PADT’s Senior Analyst & Lead Software Developer Matt Sutton for an in depth look at how digital twins created using ANSYS simulation tools optimize the operation of devices or systems, save money by reducing unplanned downtime and enable engineers to test solutions virtually before doing physical repairs.

This webinar will include an overview of technical capabilities, packaging for licensing, and updates made with the release of ANSYS 2019 R1.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 036 – Updates for Design Engineers in ANSYS 2019 R1 – Discovery Live, AIM, & SpaceClaim

 

Published on: May 6th, 2019
With: Eric Miller, Ted Harris, & Clinton Smith
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Simulation Support Manager Ted Harris, and CFD Team Lead Engineer Clinton Smith for a round-table discussion regarding new capabilities for Design Engineers in the latest release of the ANSYS Discovery family of products (Live, AIM, & SpaceClaim). Listen as they express their thoughts on exciting new capabilities, long anticipated technical improvements, and speculate at what has yet to come for this disruptive set of tools.

If you would like to learn more about this update and see the tools in action, check out PADT’s webinar covering ANSYS Discovery AIM & Live in 2019 R1 here: shorturl.at/gyKLM

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things ANSYS 035 – The History of ANSYS: An Interview with Dr. John Swanson, author of the original program & founder of ANSYS Inc.

 

Published on: April 22nd, 2019
With: Eric Miller, Ted Harris, & Dr. John Swanson
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Ted Harris for a very special interview for users of ANSYS software, Dr. John Swanson. Dr. Swanson is known as the founder of “Swanson’s Analysis Systems” in 1970; the company that would later be known to the public as ANSYS Inc. He also wrote the original ANSYS program in his home, and since leaving the company has gone on the work in philanthropy and alternative energy.

A John Fritz Medal winner, and member of the National Academy of Engineering, John is considered an authority and pioneer in the application of Finite Element methods to engineering.

We are incredibly thankful that John was able to join us for this interview, and we hope you enjoy learning a little bit about the history of ANSYS from the founder himself.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things ANSYS 034 – Celebrating 25 Years of ANSYS Simulation: Changes In The Last Quarter Century & Where The Future Will Take Us

 

Published on: April 8th, 2019
With: Eric Miller, Ted Harris, Tom Chadwick, Sina Ghods, & Alex Grishin
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Ted Harris, Tom Chadwick, Sina Ghods, and Alex Grishin, for a round-table discussion on their experience and history with simulation, including what has changed since they started using it and what they’re most impressed and excited by, followed by some prediction and discussion on what the future may hold for the world of numerical simulation.

Thank you again for those of you who have made the past 25 years something to remember, and to those of you who have come to know PADT more recently, we look forward to what the next 25 will bring.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Video: Tips and Tricks for ANSYS Mechanical Users

Over time Ziad Melham, one of PADT’s support engineers, has developed a variety of tips and tricks for ANSYS Mechanical that he shares with users when providing them with support. In this video, Ziad shares that same information with all users.

Users of ANSYS mechanical, both new and experienced, will find them helpful in making their simulation pre- and post-processing more efficient. Please enjoy and do not hesitate to share with your co-workers.

Evaluating Stresses and Forces in Threaded Fasteners with ANSYS Mechanical, Part 2

Fasteners are one of the most common and fundamental engineering components we encounter.

Proper design of fasteners is so fundamental, every Mechanical Engineer takes a University course in which the proper design of these components is covered (or at least a course in which the required textbook does so).

With recent increases in computational power and ease in creating and solving finite element models, engineers are increasingly tempted to simulate their fasteners or fastened joints in order to gain better insights into such concerns as thread stresses

In what follows, PADT’s Alex Grishin digs deeper into how to leverage ANSYS Mechanical to better model fasteners and obtain accurate results. If you did not review Part 1, do so here.

PADT-ANSYS-fastener_simulation_part2

Evaluating Stresses and Forces in Threaded Fasteners with ANSYS Mechanical

Fasteners are one of the most common and fundamental engineering components we encounter.
Proper design of fasteners is so fundamental, every Mechanical Engineer takes a University course in which the proper design of these components is covered (or at least a course in which the required textbook does so).

With recent increases in computational power and ease in creating and solving finite element models, engineers are increasingly tempted to simulate their fasteners or fastened joints in order to gain better insights into such concerns as thread stresses

In what follows, PADT’s Alex Grishin demonstrates a basic procedure for doing so, assess the cost/benefits of doing so, and to lay the groundwork for some further explorations in Part 2, which can now be found here.

PADT-ANSYS-Fastener_Simulation_Part1