ANSYS Maxwell: Building a Magnetic Gear Model

In this video, PADT’s Kang Li steps users through the process of building and running a magnetic gear from scratch in Ansys Maxwell. The model shows both standard magnets and a Halbach array.

All Things Ansys 092: Recap of Ansys 2021 R1 & Beyond

 

Published on: July 12th, 2021
With: Eric Miller, Tom Chadwick, Aleksandr Gafarov, Joe Woodward, Ted Harris, Doug Oatis & Josh Stout
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by members of the simulation support team to recap Ansys 2021 R1 and discuss expectations and predictions for 2021 R2.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things Ansys 090: Simulating Predictive Lung Modeling in a Rapidly Evolving COVID World

 

Published on: June 14th, 2021
With: Eric Miller & Jacob Riglin
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Jacob Riglin from Los Alamos National Laboratory to discuss simulation’s role in predictive lung modeling and experimentation in a rapidly evolving COVID world.

Learn how Los Alamos used Ansys CFX to predict turbulence and flow structure through the lungs and analyze the impact COVID has on it, as well as patient response to various ventilators.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things Ansys 085: Additive & Structural Optimization Updates in Ansys 2021 R1

 

Published on: April 5th, 2021
With: Eric Miller & Doug Oatis
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Lead Mechanical Engineer, Doug Oatis in order to discuss what is new with regards to additive and structural optimization in Ansys 2021 R1.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Optimizing Electronics Reliability with Ansys Sherlock – Webinar

Ansys Sherlock automated design analysis software is the only Reliability Physics/Physics of Failure (PoF)-based electronics design analysis software that provides fast and accurate life predictions for electronic hardware at the component, board and system levels in early design stages. A unique, powerful capability of Sherlock is its revolutionary ability to rapidly convert electronic CAD (ECAD) files into CFD and FEA models with accurate geometries and material properties.

Through its powerful parsing engine and embedded libraries containing over 500,000 parts, Sherlock reduces pre-processing time from days to minutes and automates workflows through its integration with Ansys Icepak, Ansys Mechanical and Ansys Workbench.

With its extensive parts/materials libraries, Sherlock automatically identifies your files and imports your parts list, then builds an FEA model of your circuit board in minutes. It also produces a holistic analysis that is critical to developing reliable electronics products. It enables designers to simulate each environment, failure mechanism and assembly that a product might encounter over its lifespan.

Join PADT’s Systems Application & Support Engineer Josh Stout for an introduction to this powerful tool along with a look at what new features and updates have been added in the Ansys 2020 R2 version.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 041: Simulating Additive Manufacturing in ANSYS 2019 R2

 

Published on: July 15th, 2019
With: Eric Miller & Doug Oatis
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Lead Mechanical Engineer Doug Oatis, to discuss the tools that make up the ANSYS Additive family of products (Additive Suite, Additive Print, & Additive Prep), and how those tools help to make 3D printing more effective and easier to navigate.

If you would like to learn more about what’s available in this latest release check out PADT’s webinar on Additive Manufacturing Updates Updates in ANSYS 2019 R2 here: https://bit.ly/2JHWYxn

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

“Equation Based Surface” for Conformal and Non-Planar Antenna Design

ANYSY HFSS provides many options for creating non-planar and conformal shapes. In MCAD you may use shapes such as cylinders or spheres, and with some steps, you can design you antennas on various surfaces. In some applications, it is necessary to study the effect of curvatures and shapes on the antenna performance. For example for wearable antennas it is important to study the effect of bending, crumpling and air-gap between antenna and human body.

Equation Based Surface

One of the tools that HFSS offers and can be used to do parametric sweep or optimization, is “Draw equation based surface”. This can be accessed under “Draw” “Equation Based Surface” or by using “Draw” tab and choosing it from the banner (Fig. 1)

Fig. 1. (a) Select Draw -> Equation Based Surface
Fig. 1. (b) click on the icon that is highlighted

Once this is selected the Equation Based Surface window that opens gives you options to enter the equation with the two variables (_u, _v_) to define a surface. Each point of the surface can be a function of (_u,_v). The range of (_u, _v) will also be determined in this window. The types of functions that are available can be seen in “Edit Equation” window, by clicking on “…” next to X, Y or Z (Fig. 2). Alternatively, the equation can be typed inside this window. Project or Design Variables can also be used or introduced here.

Fig. 2. (a) Equation Based Surface window
Fig. 2. (b) Clikc on the “…” next to X and see the “Edit Equation: window to build the equation for X

For example an elliptical cylinder along y axis can be represented by:

This equation can be entered as shown in Fig. 3.

Fig. 3. Elliptical surface equation

Variation of this equation can be obtained by changing variables R1, R2, L and beta. Two examples are shown in Fig. 4.

Fig. 4. Elliptical surface equation

Application of Equation Based Surface in Conformal and Non-Planar Antennas

To make use of this function to transfer a planar design to a non-planar design of interest, the following steps can be taken:

  • Start with a planar design. Keep in mind that changing the surface shape can change the characteristics of the antenna. It is a good idea to use a parameterized model, to be able to change and optimize the dimensions after transferring the design on a non-planar surface. As an example we started with a planar meandered line antenna that works around 700MHz, as shown in Fig. 5. The model is excited by a wave port. Since the cylindrical surface will be built around y-axis, the model is transferred to a height to allow the substrate surface to be made (Fig 5. b)
Fig. 5. Planar meandered antenna (a) on xy plane, (b) moved to a height of 5cm
  • Next, using equation based surface, create the desired shape and with the same length as the planar substrate. Make sure that the original deisgn is at a higher location. Select the non-planar surface. Use Modeler->Surface->Thicken Sheet … and thicken the surface with the substrate thickenss. Alternatively, by choosing “Draw” tab, one can expand the Sheet dropdown menu and choose Thicken Sheet. Now select the sheet, change the material to the substrate material.
Fig. 6. Thicken the equation based surface to generate the substrate
  • At this point you are ready to transfer the antenna design to the curved surface. Select both traces of the antenna and the curved substrate (as shown in Fig. 7). Then use Modeler->Surface->Project Sheet…, this will transfer the traces to the curved surface. Please note that the original substrate is still remaining. You need not delete it.
Fig. 7. Steps for transferring the design to the curved surface (a)

Fig. 7. Steps for transferring the design to the curved surface (b)

Fig. 7. Steps for transferring the design to the curved surface (c)
  • Next step is to generate the ground plane and move the wave port. In our example design we have a partial ground plane. For ground plane surface we use the same method to generate an equation based surface. Please keep in mind that the Z coordinate of this surface should be the same as substrate minus the thickness of the substrate. (If you thickened the substrate surface to both sides, this should be the height of substrate minus half of the substrate thickness). Once this sheet is generate assign a Perfect E or Finite Conductivity Boundary (by selecting the surface, right click and Assign Boundary). Delete the old planar ground plane.
Fig. 8. Non-planar meandered antenna with non-planar ground

Wave Port Placement using Equation Based Curve

A new wave port can be defined by the following steps:

  • Delete the old port.
  • Use Draw->Equation Based Curve. Mimicking the equation used for ground plane (Fig. 9).
Fig. 9. Use Equation Based Curve to start a new wave port (a) Equation Based Curve definition window (b) wave pot terminal created using equation based curve and sweep along vector
  • Select the line from the Model tree, select Draw->Sweep->Along Vector. Draw a vector in the direction of port height. Then by selecting the SweepAlongVector from Model tree and double clicking, the window allows you to set the correct size of port height and vector start point (Fig. 10).
  • Assign wave port to this new surface.
Fig. 10. Sweep along vector to create the new wave port location

Similar method can be used to generate (sin)^n or (cos)^n surfaces. Some examples are shown in Fig. 11. Fig. 11 (a) shows how the surface was defined.

Fig. 11. (a) Equation based surface definition using “cos” function, (b), (c), & (d) three different surfaces generated by this equation based surface.

Effect of Curvature on Antenna Matching

Bending a substrate can change the transmission line and antenna impedance. By using equation based port the change in transmission line impedance effect is removed. However, the overall radiation surface is also changed that will have effects on S11. The results of S11 for the planar design, cylindrical design (Fig. 8), cos (Fig. 11 b), and cos^3 (Fig. 11 c) designs are shown in Fig. 12. If it is of interest to include the change in the transmission line impedance, the port should be kept in a rectangular shape.

Fig. 12. Effect of curvature on the resonance frequency.

Equation based curves and surfaces can take a bit of time to get used to but with a little practice these methods can really open the door to some sophisticated geometry. It is also interesting to see how much the geometry can impact a simple antenna design, especially with today’s growing popularity in flex circuitry. Be sure to check out this related webinar  that touches on the impact of packaging antennas as well. If you would like more information on how these tools may be able to help you and your design, please let us know at info@padtinc.com.

You can also click here to download a copy of this example.

Discovery Updates in ANSYS 2019 R1 – Webinar

The ANSYS 3D Design family of products enables CAD modeling and simulation for all design engineers. Since the demands on today’s design engineer to build optimized, lighter and smarter products are greater than ever, using the appropriate design tools is more important than ever.

Two key tools helping design engineers meet such demands are ANSYS Discovery AIM and ANSYS Discovery Live. ANSYS Discovery AIM seamlessly integrates design and simulation for all engineers, helping them to explore ideas and concepts in greater depth, while Discovery Live operates as an environment providing instantaneous simulation, tightly coupled with direct geometry modeling, to enable interactive design exploration.

Both tools help to accelerate product development and bring innovations to market faster and more affordably.

Join PADT’s Simulation Support Manager, Ted Harris for a look at what exciting new features are available for design engineers in both Discovery Live and AIM, in ANSYS 2019 R1. This webinar will include discussions on updates regarding: 

  • Suppression of loads, constraints, & contacts
  • Topology Optimization
  • Improving simulation speed
  • Transferring data from AIM to Discovery Live

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 034 – Celebrating 25 Years of ANSYS Simulation: Changes In The Last Quarter Century & Where The Future Will Take Us

 

Published on: April 8th, 2019
With: Eric Miller, Ted Harris, Tom Chadwick, Sina Ghods, & Alex Grishin
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Ted Harris, Tom Chadwick, Sina Ghods, and Alex Grishin, for a round-table discussion on their experience and history with simulation, including what has changed since they started using it and what they’re most impressed and excited by, followed by some prediction and discussion on what the future may hold for the world of numerical simulation.

Thank you again for those of you who have made the past 25 years something to remember, and to those of you who have come to know PADT more recently, we look forward to what the next 25 will bring.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things ANSYS 033 – Using ANSYS Simulation to Disrupt the World of Capacitor Technology

 

Published on: March 25th, 2019
With: Eric Miller & Sean Katsarelis
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by Sean Katsarelis form Polycharge for a discussion on how they leverage the ANSYS Startup Program and simulation tools to disrupt the world of capacitor technology.

Listen as they discuss the various capabilities and applications best suited for this market, along with updates on the worlds of PADT and ANSYS.

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

All Things ANSYS 026 – Eigenvalue Buckling & Post-buckling Analysis in ANSYS Mechanical

 

Published on: December 3rd, 2018
With: Eric Miller & Joe Woodward
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Specialist Mechanical Engineer, Joe Woodward to discuss how eigenvalue buckling can effect the load factor of a structure, and what applications it has for a variety of different projects. All that, followed by an update on news and events in the respective worlds of ANSYS and PADT.

For more information on this topic and some visual representation of what is being discussed, check out the blog post that inspired this episode here:

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Importing and Splitting Solid Models for ANSYS HFSS 18.0

Importing solid 3D Mechanical CAD (or MCAD) models into ANSYS HFSS has always been and remains to be a fairly simple process. After opening ANSYS Electronics Desktop and creating an HFSS design, from the menu bar, select Modeler > Import. A dialog box will open to navigate to and directly open the model.

The CAD will automatically be translated and loaded into the HFSS 3D Modeler. If the geometry is correct and does not require any editing, the import process is complete and analysis can begin! However, if there are any errors with the geometry, there is excessive or invalid detail, or if it’s not organized into separate bodies conducive for electromagnetic analysis, you may soon realize that the editing capability is limited to scaling, reorienting, or Boolean operations. This approach can be particularly troublesome when portions of the model (or all of the model) which consist of different materials are not split into different objects. For example, notice the outer conductor, inner conductor, and dielectric of the imported SMA below are all one solid object.

Unless you’re lucky enough to work with the creator of the CAD, you will need to find a way to split this model into the inner and outer conductors, and the dielectric. However, since the release of ANSYS R18.1, the power of SpaceClaim Direct Modeler (SCDM) and the MCAD translator will be packaged together. The good news is, the process described above will continue to work. The better news is, SCDM offers new capabilities to directly edit or clean imported geometry. So, here are a few simple steps to quickly split this SMA connector using SCDM. You can download a copy of this model here to follow along. If you need access to SCDM, you can contact us at info@padtinc.com. It’s worth noting, at this point, that the processes discussed throughout this article work the same for HFSS-IE, Q3D, and Maxwell designs as well.

[1] First, after opening ANSYS SpaceClaim, the step file can be imported through the menu File > Open or by simply dragging and dropping the file into the SCDM window. [2] To separate the dielectric from the outer conductor, select Design > Intersect > Split Body. [3] Click and hold the center mouse button to rotate the model so the boundary between the dielectric and outer conductor is visible. Hold the Ctrl key and click the center mouse button to pan, and use the center mouse scroll to zoom in and out. Finally, press ‘z’ on the keyboard to fit the view window. [4] When positioned, click on the object to split (in this case it is the entire model). [5] Then, click on the face which defines the boundary between the dielectric and outer conductor. [6] Finally, press the Esc key. The first split is done!

Repeat the Split Body process to separate the center conductor from the dielectric. Notice under the structure tree that there are now three separate objects.

The split body function is also useful to simplify a structure for analysis. For example, the female side of the SMA could be simplified as a solid center conductor. [1] Reposition the connector to view the female side. [2]-[3] Control the visibility of each body with the object’s checkbox in the structure tree. [4] Measure the length of the female side by pressing the letter ‘e’ on the keyboard and selecting the top edge (note the line length of 2.95mm for later). [5] Then, repeat the Split Body process to split the center conductor at the boundary between the male and female sides. [6]-[7] However, rather than pressing the Esc key, click on the female receiver to automatically remove the body.

[1] To extend the center pin to its original length, select Design > Edit > Pull. [2] Click on the face where the female side was originally attached and select the Up To option. [3] Type in the previously measured length of 2.95mm. [4] Finally, press Enter (press Esc 3x to exit the Pull command).

Repeat the Split Body and Pull processes until the model has been divided into different bodies for each material type and is sufficiently simplified.

Once the model is ready, select File > Save As to save the geometry as the preferred format. Perhaps the most familiar approach to HFSS users would be to save the new model as a STEP file, then to import the model into HFSS as described in the first paragraph.

ANSYS Workbench Polyhedral Meshing

The ANSYS App Store contains all sorts of free and paid apps developed by ANSYS as well as trusted partners. These apps improve workflows and allow users to build in best practices. An app that has been of particular interest to me is Workbench Poly Meshing for Fluent

This app enables the power and capacity of Fluent Meshing, most notably the polyhedral meshing feature, with the ease of use of the ANSYS Workbench Meshing environment. In order to show the functionality of this app, I will demonstrate with the generation of a polyhedral mesh on a sample geometry from the Fluent Meshing tutorials.

To start out, I have imported a .igs file of an exhaust manifold into ANSYS SpaceClaim Direct Modeler, which has powerful repair and prepare tools that will come in handy. I notice that the geometry is comprised of 250 surfaces, which I need to fix in order to create a solid body. By navigating into the ‘Repair’ tab and selecting the ‘Stitch’ operation, SpaceClaim notes there are two stitchable edges in my geometry. I select the green check mark to perform this operation and am greeted with a solid geometry. I complete my tasks in SpaceClaim by extracting the fluid volume using the ‘Volume Extract’ tool in the ‘Prepare’ tab.

I setup my workflow in ANSYS workbench with my added ‘Fluent Meshing’ ACT module between the ‘Mesh’ module and ‘Fluent’ module. I can then proceed to create my desired surface mesh in ANSYS meshing and setup a few required inputs for Fluent Meshing.


Once this process has been completed, I can update my ‘Fluent Meshing’ cell and open the ‘Fluent’ setup cell to display my polyhedral mesh!

IMPORTANT NOTE: all named selections must be lowercase with no spaces, and the file path(s) cannot contain any spaces.

 

ANSYS 18 – SpaceClaim Webinar

In its latest release, ANSYS SpaceClaim further integrates its ease of use and rapid geometry manipulation capabilities into common simulation workflows. From large changes to behind the scenes enhancements, you’ll notice efficiency improvements across the board. You’ll save time automating geometry tasks with the expanded recording and replay capabilities of SpaceClaim’s enhanced scripting environment.

Join PADT’s Application Engineer Tyler Smith  for this webinar and learn about several improvements that are guaranteed to save time, enhance your designs and improve overall usability. We’ll cover:

  • Continued development of SpaceClaim’s scripting environment. With expanded recording capabilities and replayability of scripts on model versions, you’ll save time in the steps needed to automate geometry tasks.

  • Faceted data optimization and smoothing enhancements. You can greatly simplify and smooth topology optimized STL data for downstream printing, while preserving the integrity of localized regions.

  • Lattice Infilling for additive manufacturing. The Infilling functionality has greatly expanded to include several lattice infill types, all with custom options to ensure your 3-D printed component has an ideal strength-to-weight relationship.

  • Exploration of inner details of a model with the new fly-through capability. Without hiding components or using cross sections, this capability provides graphical feedback at your fingertips while making it even more enjoyable to work in a 3-D environment.

ANSYS 18 – Mechanical Ease of Use Webinar

We here at PADT are proud to present the ease of use and productivity enhancements that have been added to ANSYS Mechanical in release 18.

With this new release, ANSYS Mechanical focuses on the introduction of a variety of improvements that help save the users time, such as smarter data organization and new hotkeys, along with additions that can help you to better visualize specific intricacies in your models.

Join PADT’s Simulation Support & Application Engineer Doug Oatis for an overview of the current user friendly interfaces within ANSYS Mechanical, along with the numerous additions in this new release that help to improve efficiency tenfold, such as:

  • Hotkey Additions
  • Box Geometry Creation Within Mechanical
  • Free Standing Remote Points
  • Improved Status Bar Information
  • Pretension Beam Connection
  • Solver Scratch Directory Specification
  • Improved Probe Annotations

Register today to find out how you can use these enhancements to improve your throughput and stay ahead of the curve!

We look forward to seeing you there.