@ANSYS #ANSYS
@ANSYS #ANSYS
Whether leveraging improved workflows or leading-edge capabilities with Ansys 2021 R1, teams are tackling design challenges head on, eliminating the need to make costly workflow tradeoffs, developing next-generation innovations with increased speed and significantly enhancing productivity, all in order to deliver high-quality products to market faster than ever.
When it comes to high frequency electromagnetics, Ansys 2021 R1 delivers a plethora of groundbreaking enhancements. Ansys HFSS Mesh Fusion enables simulation of large, never before possible electromagnetic systems with efficiency and scalability. This release also allows for encrypted 3D components supported in HFSS 3D Layout for PCBs, IC packages and IC designs to enable suppliers to share detailed 3D component designs for creating highly accurate simulations.
Join PADT’s Lead Electromagnetics Engineer and high frequency expert Michael Griesi for a presentation on updates made to the Ansys HF suite in the 2021 R1 release, including advancements for:
If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).
You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!
@ANSYS #ANSYS
Ever since NASA began its race to space, U.S. technology companies have searched for solutions to solve a variety of challenges designed to push us further in our exploration of the stars. Whether the purpose is for space travel or for launching satellites that track weather patterns, space innovation is gaining momentum. One of the most critical challenges we are trying to solve is how to optimize communication with moving spacecrafts. Tucson Arizona’s FreeFall Aerospace has an answer; developing unique antenna systems for both space and ground use.
When working to develop this technology, FreeFall ran into a number of roadblocks due to limitations in its engineering software tool-set. The company was able to bypass these hurdles and successfully optimize development thanks to the introduction of Ansys HFSS, a specialized 3D electromagnetic software used for designing and simulating high-frequency electronic products such as antennas, antenna arrays, RF/microwave components, and much more. Because of the speed of this tool and its ability to solve multiple simulation challenges in different domains, FreeFall is able to make design changes more quickly and with better data.
Join PADT’s Lead Electromagnetics Engineer Michael Griesi and President of FreeFall, Doug Stetson for a discussion on Ansys electromagnetics offerings, and how FreeFall is able to take advantage of them for their unique application.
If this is your first time registering for one
of our Bright Talk webinars, simply click the link and fill out the attached
form. We promise that the information you provide will only be shared with
those promoting the event (PADT).
You will only have to do
this once! For all future webinars, you can simply click the link, add the
reminder to your calendar and you’re good to go!
HFSS (High Frequency Structure Simulator) employs versatile solvers and an intuitive GUI to provide unparalleled performance, as well as deep insight, into a wide variety of 3D electromagnetic (EM) problems. ANSYS HFSS is the premier EM tool for R&D and virtual design prototyping. It reduces design cycle time and boosts your product’s reliability and performance.
The ANSYS HFSS simulation suite consists of a comprehensive set of solvers to address diverse electromagnetic problems, ranging in detail and scale from passive IC components to extremely large-scale EM analyses. Its reliable automatic adaptive mesh refinement allows users to focus on the design instead of spending time determining and creating the best mesh.
Join PADT’s Lead Electromagnetics Engineer Michael Griesi for a look at what new capabilities are available for HFSS users in ANSYS 2019 R2.
This presentation will include updates for the following topics:
If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).
You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!
ANYSY HFSS provides many options for creating non-planar and conformal shapes. In MCAD you may use shapes such as cylinders or spheres, and with some steps, you can design you antennas on various surfaces. In some applications, it is necessary to study the effect of curvatures and shapes on the antenna performance. For example for wearable antennas it is important to study the effect of bending, crumpling and air-gap between antenna and human body.
One of the tools that HFSS offers and can be used to do parametric sweep or optimization, is “Draw equation based surface”. This can be accessed under “Draw” “Equation Based Surface” or by using “Draw” tab and choosing it from the banner (Fig. 1)
Once this is selected the Equation Based Surface window that opens gives you options to enter the equation with the two variables (_u, _v_) to define a surface. Each point of the surface can be a function of (_u,_v). The range of (_u, _v) will also be determined in this window. The types of functions that are available can be seen in “Edit Equation” window, by clicking on “…” next to X, Y or Z (Fig. 2). Alternatively, the equation can be typed inside this window. Project or Design Variables can also be used or introduced here.
For example an elliptical cylinder along y axis can be represented by:
This equation can be entered as shown in Fig. 3.
Variation of this equation can be obtained by changing variables R1, R2, L and beta. Two examples are shown in Fig. 4.
To make use of this function to transfer a planar design to a non-planar design of interest, the following steps can be taken:
A new wave port can be defined by the following steps:
Similar method can be used to generate (sin)^n or (cos)^n surfaces. Some examples are shown in Fig. 11. Fig. 11 (a) shows how the surface was defined.
Bending a substrate can change the transmission line and antenna impedance. By using equation based port the change in transmission line impedance effect is removed. However, the overall radiation surface is also changed that will have effects on S11. The results of S11 for the planar design, cylindrical design (Fig. 8), cos (Fig. 11 b), and cos^3 (Fig. 11 c) designs are shown in Fig. 12. If it is of interest to include the change in the transmission line impedance, the port should be kept in a rectangular shape.
Equation based curves and surfaces can take a bit of time to get used to but with a little practice these methods can really open the door to some sophisticated geometry. It is also interesting to see how much the geometry can impact a simple antenna design, especially with today’s growing popularity in flex circuitry. Be sure to check out this related webinar that touches on the impact of packaging antennas as well. If you would like more information on how these tools may be able to help you and your design, please let us know at info@padtinc.com.
You can also click here to download a copy of this example.
Don’t miss this informative presentation – Secure your spot today!
Register Here
If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).
You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!
Don’t miss this informative presentation – Secure your spot today!
Register Here
If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).
You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!