What I use Most from my Engineering Management Masters Degree

Even before finishing my mechanical engineering degree at the University of Colorado, Boulder in 2010, I had an interest in furthering my education. The decision I had at that point was whether the next step would be a graduate degree on the technical side or something more like an MBA. I would end up with the chance to study at the University of Denver (DU), focusing on Computational Fluid Dynamics (CFD), and if that field does not make it clear, my first stint in grad school was technical.

At DU, we sourced our Ansys simulation software from a company called, you guessed it, PADT. After finishing this degree, and while working at PADT, the desire to further my education cropped up again after seeing the need for a well-rounded understanding of the technical and business/management side of engineering work. After some research, I decided that a Master’s in Engineering Management program made more sense than an MBA, and I started the program back at my original alma mater, CU Boulder.

Throughout the program, I would find myself using the skills I was learning during lectures immediately in my work at PADT. It is difficult to boil down everything learned in a 10-course program to one skill that is used most often, and as I think about it, I think that what is used most frequently is the new perspective, the new lens through which I can now view situations. It’s taking a step back from the technical work and viewing a given project or situation from a perspective shaped by the curriculum as a whole with courses like EMEN 5020 – Finance and Accounting for Engineers, EMEN 5030/5032 – Fundamentals/Advanced Topics of Project Management, EMEN 5050 – Leading Oneself, EMEN 5080 – Ethical Decision Making, EMEN 5500 – Lean and Agile Management, and more. It is the creation of this new perspective that has been most valuable and influential to my work as an engineer and comes from the time spent completing the full program.

Okay okay, but what is the one thing that I use most often, besides this new engineering management perspective? If I had to boil it down to one skill, it would be the ‘pull’ method for feedback. During the course Leading Oneself, we read Thanks for the Feedback: The Science and Art of Receiving Feedback Well, Even When it is Off Base, Unfair, Poorly Delivered, and, Frankly, You’re Not In The Mood (Douglas Stone and Sheila Heen, 2014), where this method was introduced. By taking an active role in asking for feedback, it has been possible to head-off issues while they remain small, understand where I can do better in my current responsibilities, and grow to increase my value to my group and PADT as a whole.

5 questions we ask before preparing a CFD consulting quote

This post was created based on the expert advice of PADT CFD engineer and Project Lead, Nathan Huber.

Simulating the behavior of liquids and gases has become a standard part of product development in products where fluid behavior plays an important role.  Here at PADT, we have been using Computational Fluid Dynamics, or CFD, for years to model everything from combustion in turbine engines to cooling of electronics, to golf balls. With that experience, our estimates for a given project have become reasonably accurate.

However, we can only estimate accurately if we have complete and accurate information on what you need simulated and what you hope to gain from the simulation. To help everyone arrive at more accurate cost and schedule estimates, even if you are planning a project internally, we offer the following list of five questions we always ask:

1: Have we signed a Non-Disclosure Agreement (NDA)?

Before we can do anything, we need to have an agreement in place that clearly defines how both sides handle proprietary information.  When we have tried holding meetings to gather information for a quote before an NDA is in place, we almost always waste time. There is just too much that is proprietary in most products.

2. What does your CAD Geometry look like?

We also need to know the physical geometry of your system.  That is why we ask for an accurate and complete CAD model.  We take some time to poke through the files in our software to make sure we can use the geometry, it is accurate, and it has the level of detail required for CFD. Basically, we check to see if we can pull a fluid domain from your CAD models. Remember, we are not simulating the solid part of your product; we are modeling the inverse and therefore need to pull a negative volume from your geometry.

3. What are the Boundary Conditions and Material Properties?

Now that the geometric domain is understood, we need to know what is inside that domain, and what is acting upon it.  We will ask you for boundary conditions, and for the material properties of the fluid or fluids you are asking us to model.  The complexity, time variation, and severity of the loads drive the difficulty of setting up and running the simulation. And the material properties can also impact the sophistication of the model as well as its robustness.  Both, therefore, have a significant impact on cost.

4. What results do you want to see?

When a simulation finishes, it can be post-processed to get a vast array of plots, figures, animations, pretty pictures, etc.  Those take time to create, so we need to know what you want to see. Also, we set up some post-processing parameters before we start the simulation.

5. What do you want to learn from your CFD Simulation?

The whole point of doing a CFD simulation is to study the behavior of your system. We need to know what behavior you need to understand so we can make sure that the simulation we propose answers your questions and guides you in your design process. 


We hope you find this review useful when you are planning your internal CFD project as well as those you outsource. And speaking of outsourcing, please consider PADT as your resources for any future simulation projects of any type, not just CFD.  Now, you already know what questions we will ask.

Phoenix Business Journal: ​Remembering Kelley Johnson, aircraft design icon and project management superstar

One of my engineering idols is Clarence “Kelley” Johnson. He led the design of many of the coolest aircraft ever made, and he was a pioneer in managing large engineering projects.  In “​Remembering Kelley Johnson, aircraft design icon and project management superstar” I talk about why he was such an important figure in technology, and some rules he developed for effective project management. Even if you are not an airplane person, it is worth getting to know his work and his methods.