Top Ten Additive Manufacturing Terms to Know

The world of additive manufacturing, or 3D printing, is constantly evolving. The technology was invented less than 35 years ago yet has come a long way. What began as a unique, though limited, way to develop low-end prototypes, has exploded into a critical component of the product development and manufacturing process with the ability to produce end-use parts for critical applications in markets such as industrial and aerospace and defense.

To help our customers and the larger technology community stay abreast of the changing world of additive manufacturing, we launched a glossary of the most important terms in the industry that you can bookmark here for easy access. To make it easier to digest, we’re also starting a blog series outlining ten terms to know in different sub-categories.

For our first post in the series, here are the top ten terms for Additive Manufacturing Processes that our experts think everyone should know:

Binder Jetting

Any additive manufacturing process that uses a binder to chemically bond powder where the binder is placed on the top layer of powder through small jets, usually using inkjet technology. One of the seven standard categories defined by ASTM International (www.ASTM.org) for additive manufacturing processes.

Digital Light Synthesis (DLS)

A type of vat photopolymerization additive manufacturing process where a projector under a transparent build plate shines ultraviolet light onto the build layer, which is against the transparent build plate. The part is then pulled upward so that a new layer of liquid fills between the build plate and the part, and the process is repeated. Digital light synthesis is a continuous build process that does not create distinct layers.

Direct Laser Melting (DLM) or Direct Metal Laser Sintering (DMLS)

A type of powder bed fusion additive manufacturing process where a laser beam is used to melt powder material. The beam is directed across the top layer of powder. The liquid material solidifies to create the desired part. A new layer of powder is placed on top, and the process is repeated. Also called laser powder bed fusion, metal powder bed fusion, or direct metal laser sintering.

Directed Energy Deposition (DED)

An additive manufacturing process where metal powder is jetted, or wire is extruded from a CNC controlled three or five-axis nozzle. The solid material is then melted by an energy source, usually a laser or electron beam, such that the liquid metal deposits onto the previous layers (or build plate) and then cools to a solid. One of the ASTM defined standard categories for additive manufacturing processes.

Fused Deposition Modeling (FDM)

A type of material extrusion additive manufacturing process where a continuous filament of thermoplastic material is fed into a heated extruder and deposited on the current build layer. It is the trademarked name used for systems manufactured by the process inventor, Stratasys. Fused filament fabrication is the generic term.

Laser Powder Bed Fusion (L-PBF)

A type of powder bed fusion additive manufacturing process where a laser is used to melt material on the top layer of a powder bed. Also called metal powder bed fusion or direct laser melting. Most often used to melt metal powder but is used with plastics as with selective laser sintering.

Laser Engineered Net Shaping (LENS)

A type of direct energy deposition additive manufacturing process where a powder is directed into a high-energy laser beam and melted before it is deposited on the build layer. Also called laser powder forming.

Material Jetting

Any additive manufacturing process where build or support material is jetted through multiple small nozzles whose position is computer controlled to lay down material to create a layer. One of the ASTM defined standard categories for additive manufacturing processes.

Stereolithography Apparatus (SLA)

A type of vat photopolymerization additive manufacturing where a laser is used to draw a path on the current layer, converting the liquid polymer into a solid. Stereolithography was the first commercially available additive manufacturing process.

Vat Polymerization

A class of additive manufacturing processes that utilizes the hardening of a photopolymer with ultraviolet light. A vat of liquid is filled with liquid photopolymer resin, and ultraviolet light is either traced on the build surface or projected on it. Stereolithography is the most common form of vat photopolymerization. The build layer can be on the top of the vat of liquid or the bottom. One of the ASTM defined standard categories for additive manufacturing processes.

We hope this new blog series will help to firm up your knowledge of the ever-evolving world of additive manufacturing. For a list of all of the key terms and definitions in the additive manufacturing world, please visit our new glossary page at https://www.3dprinting-glossary.com/. The glossary allows you to search by terms or download a PDF of the glossary in its entirety to use as a reference guide.

We also know that there are a ton of experts in our community with knowledge to share. If you notice a term missing from our glossary or an inaccurate/incomplete description, please visit the suggestions page at https://www.3dprinting-glossary.com/suggest-a-correction-clarification-or-new-term/ and drop us a note.

Subscribe to the PADT blog or check back soon for the next installment in our series of “Top Ten Terms to Know in Additive Manufacturing.” We also welcome your feedback or questions. Just drop us a line at here.

Stratasys To Release First Pantone Validated 3D Printer & Much More! – New Product Announcement 2019

In an exciting statement this week, Stratasys, world leader and pioneer of all things of 3D Printing technology announced the launch of three new products: F120 3D Printer, V650 Flex Large Scale Stereolithography Printer, and Pantone Color Validation on the J750 and J735 3D Printers.

As a certified platinum Stratasys channel partner, PADT is proud to offer these new releases to manufacturers, designers, and engineers of all disciplines in the four corners area of the United States (Arizona, Colorado, Utah, and New Mexico). They are also including a new line of business copiers.

Check out the brochures listed below, and contact PADT at info@padtinc.com for additional information. More on these offerings will be coming soon.

Introducing the Stratasys F120
Affordable Industrial-grade 3D printing

The newest member of the F123 platform brings the value of industrial grade 3D printing capabilities to an accessible price point​.

To get professional 3D printing results, you need professional tools. But most people think they can make do with low-priced desktop printers. They quickly find out, however, that these printers don’t meet their expectations.

It doesn’t have to be a choice between great performance and price. The Stratasys F120 delivers industrial-grade 3D printing at an attractive price with consistent results that desktop printers can’t match.

Introducing the Stratasys V650 Flex
A Configurable, Open VAT, Large Scale Stereolithography Printer by Stratasys

Introducing the Stratasys V650 Flex: a production ready, open material Vat Polymerization 3D Printer with the speed, reliability, quality, and accuracy you would expect from the world leader in 3D printing.

Upgrade to the Stratasys V650 Flex 3D Stereolithography printer and you can add game-changing advances in speed, accuracy and reliability to the established capabilities of Stereolithography.

Create smooth-surfaced prototypes, master patterns, large concept models and investment casting patterns more quickly and more precisely than ever.

Introducing Pantone Color Validation for the J750 and J735 3D printers
3D printing with true color-matching capabilities is here

Say goodbye to painting prototypes and say hello to the Stratasys J750 and J735 3D Printers. As the first-ever 3D printers validated by Pantone, they accurately print nearly 2,000 Pantone colors, so you can get the match you need for brand requests or design preferences.

This partnership with Pantone sets the stage for a revolution in design and prototype processes. As the industry’s first PANTONE Validated™ 3D printers, they allow designers to build realistic prototypes faster than ever before – shrinking design-to-prototype and accelerating product time-to-market.