Unexpected Joys at Rapid 2016

While much has been (justifiably) written about HP and XJet releasing new, potentially game-changing products at RAPID 2016, I wanted to write this post about some of the smaller, unexpected joys that I discovered. If I sound overly enthusiastic about the people and companies behind them, it is likely due to the fact that I wrote this on the flight back, staring out at the clouds and reflecting on what had been a wonderful trip: I own no locks, stocks or barrels in any of these companies.

1. Essentium Materials – Carbon Nanotubes and Microwaves to improve FDM mechanical properties
Over the past year, I have studied, written and made presentations about the challenges of developing models for describing Fused Deposition Modeling (FDM) given their complex and part-specific meso-structure. And while I worked on developing analytical and numerical techniques for extracting the best performance from parts in the presence of significant anisotropy, the team at Essentium has developed a process to coat FDM filaments with Carbon nanotubes and extrude them in the presence of microwave radiation. In the limited data they showed for test specimens constructed of unidirectional tool-paths, they demonstrated significant reduction in anisotropy and increase in strength for PLA. What I liked most about their work is how they are developing  this solution on a foundation of understanding the contributions of both the meso-structure and inter-filament strength to overall part performance. Essentium was awarded the “RAPID Innovations award”, first among the 27 exhibitors that competed and are, in my opinion, addressing an important problem that is holding back greater expansion of FDM as a process in the production space.
Website: http://essentiummaterials.com/

2. Hyrel 3D – Maker meets Researcher meets The-Kid-in-All-of-Us
I only heard of Hyrel 3D a few days prior to RAPID, but neglected to verify if they were exhibiting at RAPID and was pleasantly surprised to see them there. Consider the options this 3D printer has that you would be hard pressed to find in several 3D printers combined: variable extrusion head temperatures (room temp to 450 C), sterile head options for biological materials, a 6W laser (yes, a laser), spindle tools, quad head dispensing with individual flow control and UV crosslinking options. Read that again slowly. This is true multiple degree-of-freedom material manipulation. What makes their products even more compelling is the direct involvement of the team and the community they are building up over time, particularly in academia, across the world, and the passion with which they engage their technology and its users.
Website: http://www.hyrel3d.com/

3. Technic-Print: New Chemistry for Improved FDM Support Removal
If you manufacture FDM parts with soluble supports, keep reading. A chemist at Technic Inc. has developed a new solution that is claimed to be 400% faster than the current Sodium-Hydroxide solution we use to dissolve parts. Additionally, the solution is cited as being cleaner on the tank, leaving no residue, has a color indicator that changes the solution’s color from blue to clear. And finally, through an additional agent, the dissolved support material can be reclaimed as a clump and removed from the solution, leaving behind a solution that has a pH less than 9. Since PADT manufactures one of the most popular machines that are used to dissolve these supports that unbeknown to us, were used in the testing and development of the new solution, we had an enriching conversation with the lead chemist behind the solution. I was left wondering about the fundamental chemistry behind color changing, dissolution rates for supports and the reclaiming of support – and how these different features were optimized together to develop a usable end-solution.
Website: http://www.technic.com/techni-print-lp

 

4. Project Pan: Computationally Efficient Metal Powder Bed Fusion Simulation
I presented a literature review at AMUG (another Additive Manufacturing conference) last month, on the simulation of the laser-based powder bed fusion. At the time, I thought I had captured all the key players between the work being done at Lawrence Livermore National Labs by Wayne King’s group, the work of Brent Stucker at 3DSIM and the many academics using mostly commercially available software (mostly ANSYS) to simulate this problem. I learned at RAPID that I had neglected to include a company called “Project Pan” in my review. This team emerged from Prof. Pan Michaleris’s academic work. In 2012, he started a company that was acquired by Autodesk two months ago. In a series of 3 presentations at RAPID, Pan’s team demonstrated their simulation techniques (at a very high level) along with experimental validation work they had done with GE, Honeywell and others through America Makes and other efforts. What was most impressive about their work was both the speed of their computations and the fact that this team actually had complex part experimental validations to back up their simulation work. What most users of the powder bed fusion need is information on temperatures, stresses and distortion – and within time frames of a few hours ideally. It seems to me that Pan and his team took an approach that delivers exactly that information and little else using different numerical methods listed on their site (novel Hex8 elements, an element activation method and intelligent mesh refinement) that were likely developed by Pan over the years in his academic career and found the perfect application, first in welding simulation and then in the powder bed fusion process. With the recent Autodesk acquisition, it will be interesting to see how this rolls out commercially. Details of some of the numerical techniques used in the code can be found at their website, along with a list of related publications.

Website: http://pancomputing.com/

https://youtu.be/uGXPlsPRlA0

5. FDA Participation: Regulating through education and partnership
On a different note from the above, I was pleasantly surprised by the presence of the FDA, represented by Matthew Di Prima, PhD. He taught part of a workshop I attended on the first day, took the time to talk to everyone who had an interest and also gave a talk of his own in the conference sessions, describing the details of the recently released draft guidance from the FDA on 3D printing in medical applications. It was good to connect the regulatory agency to a person who clearly has the passion, knowledge, intelligence and commitment to make a difference in the Additive Manufacturing medical community. Yes, the barriers to entry in this space are high (ISO certifications, QSR systems, 510(k) & Pre-Market Approvals) but it seems clear that the FDA, at least as represented by Dr. Di Prima, are doing their best to be a transparent and willing partner.
Website: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/3DPrintingofMedicalDevices/default.htm

What really makes a trip to a conference like RAPID worth it are the new ideas, connections and possibilities you come away with that you may not stumble upon during your day job – and on that account, RAPID 2016 did not disappoint. As a line in one of my favorite song’s goes:

“We’ll never know, unless we grow.
There’s too much world outside the door.”
– Fran Healy (Travis, “Turn”).

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

03/28/2024

SAF Blue Carpet Event

03/28/2024

2024 Arizona Space Summit

04/03/2024

Low Frequency Updates in Ansys 2024 R1 - Webinar

04/03/2024

Venture Madness Conference Reception + Expo

04/03/2024

Stratasys F3300: Game Changing Throughput - Webinar

04/08/2024

39th Space Symposium

04/09/2024

39th Space Symposium

04/10/2024

Discovery Updates in Ansys 2024 R1 - Webinar

04/10/2024

39th Space Symposium

04/11/2024

39th Space Symposium

04/22/2024

Experience Stratasys Truck Tour: Houston, TX

04/24/2024

Structures Updates in Ansys 2024 R1 (2)

04/24/2024

Experience Stratasys Truck Tour: Houston, TX

05/07/2024

Experience Stratasys Truck Tour: Albuquerque, NM

05/08/2024

Fluent Materials Processing Updates in Ansys 2024 R1 - Webinar

05/09/2024

Experience Stratasys Truck Tour: Los Alamos, NM

05/14/2024

Simulation World 2024

05/15/2024

Simulation World 2024

05/16/2024

Simulation World 2024

05/22/2024

Optics Updates in Ansys 2024 R1 - Webinar

06/12/2024

Connect Updates in Ansys 2024 R1 - Webinar

06/26/2024

Structures Updates in Ansys 2024 R1 (3) - Webinar

06/27/2024

E-Mobility and Clean Energy Summit

07/10/2024

Fluids Updates in Ansys 2024 R1 - Webinar

08/05/2024

2024 CEO Leadership Retreat

10/23/2024

PADT30 | Nerdtoberfest 2024

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: