
We Make Innovation Work
www.padtinc.com

Using the ACT Console for
Automation in Mechanical

We Make Innovation Work
www.padtinc.com

The ACT Console in Mechanical: Backgroung

• ACT (the Ansys Customization Toolkit) is the main (preferred) programming interface to the

Ansys suite of products. It is built on top of an underlying .NET framework, and so inherits

much of the functionality found there

• PADT has written some blog posts in the past which cover some of this functionality (one

example, is the choice of language itself –see here)

• When discussing ACT, Ansys tends to make a distinction between “customization” and

“process compression or automation”

• In the former, the user creates some new (custom) functionality using ACT –called an

“extension”. This typicallly involves the creation of a Graphical User Interface (GUI) in

addition to the functional code

• in the latter, the user is simply creating a few of lines of code to execute when needed to

speed up or formalize some laborious process

• Good tutorials and examples exist for creating ACT extensions (the customization aspect:

see here for example) –as well an an extensive ‘app’ store for download here)

• In this article, we want to focus on just the automation aspect of ACT in Mechanical. In

particular, we want to show how users can rather quickly and easily write a short script to a

automate a procedure in Mechanical using the ACT console.

https://www.padtinc.com/blog/experiences-with-developing-a-somewhat-large-act-extension-in-ansys/
https://www.youtube.com/watch?v=t3-xugzyp5o
https://catalog.ansys.com/

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• The ACT console in Mechanical has been around for some time now, and is evolving.

• Ansys refers to this console as the “Mechanical Scripting Editor”.

• As of version 2020R1, the Mechanical scripting editor is invoked from the ‘Automation’

tab in the top menu and supprts the following features

New Script

Open Script
Save Script

Run Script

Start Debugger

Start Recording
Insert Snippet

Show Button Editor

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• There are three window panes whose functionality is as described below

Description. A

short description

of the script goes

here

The editor.The

contents of the

current script go

here

The console, or “Shell”. This is

where lines of code actually

get executed

• insert pre-existing code to

execute in the shell

• Clear the shell

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• The Mechanical Scripting Editor only interprets the python language

• As explained elsewhere (and in previous blog posts), ACT supports the

IronPython version of the python programming language

• IronPython is the only .NET-supported language that the Mechanical

Scripting Editor can interpret

• Type this line in the script

editor (the ‘editor’ window)

• Hit the ‘run script’ button to

see results in the shell

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• All commands entered into the shell get executed within a certain

namespace. Let’s call it the “entry point”.

• The following five Ansys objects are available in this entry point

• ExtAPI: Short for “External Application Programming Interface”.

This is the top-level for accessing all available variables and

objects

• Tree: Controls everything in the mechanical tree

• Model: Allows one to browse the model data, mesh, geometry...

• DataModel: Reads all that was created in a model

• Graphics: Controls the graphic window, take screen shot, draw...

• These objects have a LOT of redundancy (there are often multiple

ways to do something).

• For example, the following two lines achieve the same end (running

the model):
• DataModel.AnalysisList[0].Solution.Solve()

• Model.Analyses[0].Solve()

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• A major enhancement to the Mechanical Scripting Editor at 2020R1 is the indtroduction of

the ‘Start Recording’ button

• This allows the user to capture GUI operations in the Mechanical Scripting Editor*

• To see how this enhances productivity, let’s first use it to apply a fixed support to the four

cylindrical blind hole features shown below (highlighted green)

• This model is supplied with this article as a 2020R1 archive

*This functionality is brand new at 2020R1. Not all operations are recorded. Future versions will support more

operations. This is a a work in progress!

• Open the archive

• Launch the Scripting Editor

as shown in slide 3

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• Make sure all panes are clear

• Then hit the “Start Recording” button

• In the GUI, select the four holes, and then in top tab, select ‘Environment->Fixed’

Note:

The fixed support

is created, AND

the associated ACT

code automatically

populates the

editor!

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• It’s worth taking a critical look at the code that’s generated

#region UI Action

analysis_1 = DataModel.GetObjectById(61)

fixed_support_2 = analysis_1.AddFixedSupport()

selection =

ExtAPI.SelectionManager.CreateSelectionInfo(SelectionTypeEnum.GeometryEntities)

selection.Ids = [303, 305, 306, 304]

fixed_support_2.Location = selection

#endregion

• auto-generated comment: The start of a single recorded action

• Get the analysis object (the environment – ‘Static Structural’)

• Add fixed support by invoking the ‘AddFixedSuport’ method of

the analysis object

• Get the four selected hole surface ID’s and place in a ‘SelectionInfo’ object

• Point the fixed support object to the contents of the SelectionInfo object

• auto-generated comment: End of single recorded action

Note:

• The recorder seems to identify all objects by their DataModel ID’s

• If you want the script to be more robust (what if the model changes?), you will want to

minimize the number of objects you reference thsi way. For example, we can replace the first

three lines with this one...

fixed_support_2= = Model.Analyses[0].AddFixedSupport()

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• Another Note: numbering found in the code reflects the sequence of variable creation by the

recorder. I’m generating a ‘fixed_support_2’ here because I deleted a ‘fixed_suport_1’ previously

• Details like this can make for confusing code. It’s therefore a good idea to rename variables to make

more sense for future applications

• The takeway here is to use the recorder feature only as an aid –a shortcut to looking things up.

• But always clean up later...

• Delete the fixed support from the model in Workbench

• Stop the recorder

• Clear the editor and cut-and-paste the following cleaned up code into the editor pane (or open the

‘fixedsupport.py’ script from the user_files folder)

• Hit “Run Script”

fixed_support = Model.Analyses[0].AddFixedSupport()

selection =

ExtAPI.SelectionManager.CreateSelectionInfo(SelectionTypeEnum.GeometryEnti

ties)

selection.Ids = [303, 305, 306, 304]

fixed_support.Location = selection

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• Ok. Now, after clearing the editor, start the recorder again and record the

creation of the load shown below

• The load is applied on the surfaces shown and has the components

{FX,FY,FZ} = {-300N, -400N, -500N}

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• The preceding generates the following lines of code

• turn the recording button ‘off’ at this point

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• To test this code, we should just need to delete the ‘Force’ object we created

(and recorded) in the tree, and run the script...

• However, when we do so, we get the ‘run-time’ error shown below

• This is happening

because the

recorder

references the old

force object by its

datamodel ID

(which is no

longer valid)

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• So, let’s test the code again.

• We’ll delete the force object from the tree (again)

• This time, make sure to comment out all (redundant) ID references to the load we’re creating

• Comment

out ID

selections of

the new

force object

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• Hit “Run Script” again

• This time it works !

• Notice all

redundant

ID

references

to force

object

commented

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• This experience reminds us that the ‘record’ feature is still in its infancy

• Among other things, it makes redundant reference to object ID’s that get created in the recording

• This last feature requires us to comment or remove code that will become broken upon re-use (created

object ID’s will change the next time we re-run the code)

• We can make the code still more robust by removing ALL object ID references (not just of objects our script

creates) AND by adding code that selects our named selection for us...

• Clear the editor (by deleting all highlighted text in the editor) and the shell (hit “Clear Contents”), and delete

the force object again

• Cut-and-paste following block of code into th editor and hit “Run Script” (or “Open script” “load1.py” from

the user_files folder)

mycomp = Tree.Find(name="load")[0].Location

selection = ExtAPI.SelectionManager.NewSelection(mycomp)

force=Model.Analyses[0].AddForce()

force.DefineBy = LoadDefineBy.Components

force.XComponent.Output.SetDiscreteValue(0, Quantity(-300, "N"))

force.YComponent.Output.SetDiscreteValue(0, Quantity(-400, "N"))

force.ZComponent.Output.SetDiscreteValue(0, Quantity(-500, "N"))

‘Find’ the named selection in the tree (instead of manually selecting it)

‘Select’ the named selection

Don’t reference any object ID’s

Removed all

redundant

object

references

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• This time, we didn’t even have to reference the geometric entities making up our named

selection (our code found the associated named selection)!

• This is now fairly robust. In fact, you can keep hitting “Run Script” and it will keep adding

the same load

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• Ok. Let’s automate a rather tedious repetitive task

• Imagine that we want to create individual “deformed” STL files of the surfaces shown

below (highlighted red and stored in named selection “mysurfaces”)

• There are 20 such surfaces.

• With no way to automate this

procedure, we would have to

create 20 indivdual surface

deformation plots “by hand”

• We would then have to go

through each one and “Export”

using the “STL file” option

• This would be partcularly

cumbersome if we had to run

this model several times...

Note:

We won’t bother using the record

feature, as exporting results do not yet

get recorded

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• ...or, you could just cut-and-paste the lines of code below into the editor (or “Open

Script”, navigate to the project’s user_files folder, and select “STLExport.py”) and “Run

Script”

• Make sure to first clear the editor and shell (if needed) as before

expsurfaces = Tree.Find(name="mysurfaces")[0].Location

facelist = expsurfaces.Ids

myresults = []

solu = Model.Analysis[0].Solution

for face in facelist:

selInfo = ExtAPI.SelectionManager.CreateSelectionInfo(SelectionTypeEnum.GeometryEntities)

selInfo.Ids.Add(face)

selection = ExtAPI.SelectionManager.NewSelection(selInfo)

myresults.append(solu.AddTotalDeformation())

solu.EvaluateAllResults()

counter = 1

for result in myresults:

filname = "C:\\users\\dface"+str(counter)+".stl"

result.ExportToSTLFile(filname)

counter += 1

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor (ACT Console)

• The script creates a deformation plot for each surface, and exports an appropriate STL for

each...

• 20 deformation plots created

• 20 STL files created

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor Resources

• In STLEXport.py, notice that we’re creating the result objects in a separate loop from the export

• While not strictly necessary, we’ve done this because, once a results object is defined, it has to be

evaluated. And result objects can’t be evaluated individually (it’s all or nothing). Because of this

requirement, we thought it’s probably more efficient to evalute once –instead of in a loop

• Note the two highlighted lines of code. We encontered this before with the recording tool (slide 9),

but this time, we’re doing it within a loop: selecting each individual face of the named selection

“mysurfaces”. This has to be done in order to associate each individual face with it’s own

deformation result (as required for separate deformed STL files)

• But how did we know where to the find the ‘ExportSTLFile’ method...?

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor Resources

• As you may suspect, success in ACT scripting depends on how successful one is in finding the

relevant objects and functionaliy.

• There are three main ways to do this (beyond the record feature we’ve already seen). We’ll list

them in the rough order of how frequently we use them (from most to least):

1. Use the object inspection capability of the smart shell. If you don’t know what arguments

a particular method takes, or even where a method is, this can be useful

2. See the documentation

3. Google it!

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor Resources

• If you type one of the predefined objects from the entry point (see slide 6) into the shell, followd by

a dot <.>, all the associated methods and attributes will be listed. For example, if we type ‘Model.’

into the window, we get this...

1. Object Inspection

• When you select any of the of the methods in the drop-down list, you will see a short description of

the method, as well as the arguments, if any, it takes

• For example. How do we solve a model in ACT?

• We might suspect that this would be a method under Model.Analyses. We can look for it like this...

• Scroll down the alphabetical list,

or type”Solve”

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor Resources

• You will find the documentation invaluable. It grows with each release

• It’s how we found the STL export method. We first used shell object insepction to search the

methods under result object...

2. See the Documentation

• so, then we went to the documentation, and found

this (here’s a link: Export a Result Object to an STL

File (ansys.com))

• It wasn’t there (we think there’s

another way to do it under

‘Graphics’, however)

https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v194/act_script/act_script_examples_export_result_object.html

We Make Innovation Work
www.padtinc.com

The Mechanical Scripting Editor Resources

• Googling turns up a surprising amount of helpful, free material, including tutorials, blog posts, and

other documentation to help answer specific questions.

• For example, the following query...

2. Google It!

...yielded this...

https://forum.ansys.com/discussion/9548/act-script-assign-

items-to-a-named-selection

https://forum.ansys.com/discussion/9548/act-script-assign-items-to-a-named-selection

We Make Innovation Work
www.padtinc.com

Conclusions

• The Mechanical Scripting Editor provides users with a very convenient way to automate

cumbersome or repetitive tasks in Ansys Mechanical

• The recent addition of the ‘record’ feature makes this easier than ever before

• As useful as the ‘record’ feature is, users should always rename variables created in this

way to suit their application. They should also remove references to DataModel ID’s

whenever possible, as these may not be persistent as the model changes

• Users can also find a wealth of documentation and tutorials –starting with the

documentation that ships with Ansys products (and may be found on the Customer

Portal).

	Using the ACT Console for Automation in Mechanical
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

