
We Make Innovation Work
www.padtinc.com

Importing and Mapping
Model Load Data

Using ANSYS DPF

Alex Grishin1 Nathan Hays2

1. Consulting Engineer, PADT, Inc.(alex.grishin@padtinc.com)

2. Owner and Principle Researcher, nuLUCA (nate@nuluca.com)

https://www.padtinc.com/
https://www.nuluca.com/

We Make Innovation Work
www.padtinc.com

Background And Introduction

• In this blog post, we thought we’d do something a bit different

• Recently, PADT worked with Nathan Hays of nuLUCA to help analyze a unique bio-mimetic

residential tile design (and develop a process for doing this frequently)

• nuLUCA uses the Rhino suite of tools for geometry and mesh generation.

• As ANSYS does not have specific interfaces for these tools, transferring the data may be a

challenge.

• PADT thought that this was perfect opportunity to harness some of ANSYS’ free Python DPF

modules for this purpose.

• So, what follows are the fruits of the combined efforts of nuLUCA and PADT towards this goal.

• And for Rhino users who who are less familiar with Python, we outline an analgous procedure

which avoids DPF entirely in the Appendix

• Enjoy!

https://www.nuluca.com/

We Make Innovation Work
www.padtinc.com

The Grasshopper Workflow

• Users of Rhino's Grasshopper plugin have access to powerful visual scripting tools to facilitate
design. The example we’re using in this post was created with this tool.

• An additional Grasshopper plugin we used is called Ladybug. This is used to define envionmental
(climate) data for Grasshopper designs.

• The workflow for this example is shown below

• Create a SkyMatrix to plug into

Ladybug’s IndidentRadiation

component. This component gives

us two sets of data we’ll need: A

new mesh created by the

incidentRadiation components

that represents the surface of the

geometry we’re analyizing, and a

list of doubles –the indices of

which correspond to the face

indices of the new mesh, and the

values of which are the incident

heat flux values

• We can iterate through the variables hoys (hous of the year) –

each time storing the results (IR values by face) in a DataTree,

with each branch containing a list of IR values

https://www.rhino3d.com/6/new/grasshopper/
https://www.ladybug.tools/resource.html

We Make Innovation Work
www.padtinc.com

The Grasshopper Workflow

• Below is an example of a design created by this workflow

• In what follows, we will describe the procedures involved in transferring this data to an

ANSYS model (Nathan has translated the entire process in c# scripts exetutable from

Rhino*, but we’lll use ANSYS DPF instead)

*See the Appendix

for more details

We Make Innovation Work
www.padtinc.com

Importing (mapping) External Data in ANSYS

• In a previous post we demonstrated how to import a spatially and temporally varying load in

ANSYS Workbench using the External Data Tool

• Among other things, readers should have learned that importing spatially varying data over

multiple time steps can be quite time consuming and inefficient using the external data tool

• One alternative is to insert an MAPDL script to define the tabular loading, as shown in this post

• There are other cases, however, in which users may have to map spatially and temporally varying

data in a non-structured form (unstructured mesh data, for example, in which constructing a

simple table to describe the data is not possible) that doesn’t conform to their mesh.

• In such cases, users may again turn to MAPDL scripting (see the MAPDL commands: CBDOF,

BFINT, as well as *moper,,,map)

• However, there are cases where even the solutions above will prove difficult, such as when

mapping element loads (whether volumetric or surface effect) from one mesh to another over

multiple time steps (and this is especially true for very large models)

• In this article, we’d like to offer a relatively painless solution in such cases –especially when

mapping data from outside ANSYS. And this method scales nicely with model size

• To do this, we’ll use the powerful mesh utilities of PyVista which ships with pyMAPDL and pyDPF-

Post (see our previous articles on using PyMAPDL and PyDPF-Post)

https://www.padtinc.com/wp-content/uploads/2022/02/PADT-ANSYS-Tabular-Loading-ANSYS-18.pdf
https://www.padtinc.com/wp-content/uploads/2022/03/PADT-ANSYS-Tabular-loads-2.pdf
https://www.padtinc.com/2022/07/18/ansys-scripting-python-p1-solve-post/

We Make Innovation Work
www.padtinc.com

mk_sfe

ds.dat,

file.rth,

.py files,

input.xlsx

python project folder

(workingdir,inputpath)

dp0\SYS\MECH

Workbench Project

solution folder

(mapdlpath)

WB Project

folder

user_files

Workbench

Project user files

folder (userdir)

• As in previous posts, we’ll use Python with an ANSYS Workbench model, and so our data

pipeline will look something like the one below

• So, we’ll first define all necessary path variables

The Project Setup

We Make Innovation Work
www.padtinc.com

• So, launch a new Python session in your editor of choice

• We’ll also use the “launch_mapdl” module of ansys.mapdl.core in order to directly read in the mesh

• In this exampe, we’ll read and apply heat flux data provided in the form of a spreadsheet. In order to make this painless, readers

should import a free module for this purpose, like openpyxl or pandas. Since pandas is by far the most popular Python module for

doing this, we’ll use that.

• With Pandas installed, issue the following lines of Python to define file paths and import the spreadsheet data...

from ansys.mapdl.core import launch_mapdl

import numpy as np

import pyvista as pv

import pandas as pd

workingdir = r"C:\Users\alex.grishin\focus_article"

projectdir = workingdir + f"\\example_files"

userdir = peojectdir + f"\\user_files"

mapdlpath = peojectdir + f"\\dp0\\SYS\MECH\\ds.dat"

inputpath = workingdir + f"\\nuLUCA_tile IR data.xlsx"

#read in Rhino model mesh vertices

verts = pd.read_excel(inputpath,sheet_name='Mesh Vertex List',index_col=0).to_numpy()

#read in Rhino model surface facet connectivity

faces = pd.read_excel(inputpath,sheet_name='Mesh Face List',index_col=0).to_numpy()

#read in Ladybug radiation data

incrad = pd.read_excel(intputpath,sheet_name='Incident Radiation',index_col=0).to_numpy()

• Change this paths to your

locations

Import Heat Flux Data

https://openpyxl.readthedocs.io/en/stable/
https://pandas.pydata.org/
https://stackshare.io/stackups/pypi-openpyxl-vs-pypi-pandas
https://pandas.pydata.org/

We Make Innovation Work
www.padtinc.com

• The previous lines of code use Pandas to read in the data found in the spreadsheet worksheets “Mesh

Vertex List”, “Mesh Face List”, and “incident Radiation”

• The code imports the data found there and stores it in a numpy array

• Note that we’re relying on Pandas’ default logic for determining the location and extent of our data

(using the first row and column as header and indices, respectively)

• So, we can query the arrays we just imported to instantly discover the size of the source

mesh, as well as the the times we have heat flux data for

Import Heat Flux Data

We Make Innovation Work
www.padtinc.com

• Use the numpy.array shape method on each of the imported arrays to ensure everyting was read in:

• 2937 vertices • 5870 facets

• Incident

radiation over

5870 faces over

a 12-hour period

Import Heat Flux Data

We Make Innovation Work
www.padtinc.com

Create The ANSYS Model

• Next, we have to create the ANSYS model before continuing

• In this example, we have a model of a bio-inspired outdoor tile design for residential housing

• The intent of the design is to dissipate heat more efficiently than more traditional designs

• The thermal load on the tile comes from the terrestrial solar radiant heat flux data we just read in from

Ladybug

• The geometry exists in a CAD-neutral volumetric STEP file created in Rhino as a manifold solid B-rep

• Nathan at nuLUCA wraps the entire process we’re about to describe on the ANSYS-DPF-side completely

within c# scripts in Grasshoper (see the Appendix)

• But we want to describe the process on the ANSYS-DPF-side in some detail for our readers.

• Since the original geometric algorithms used to

create this geometry (not uncommon in tools like

Grasshopper) do not have a faithful and robust

‘traditional’ parametric CAD representation, the

volume is represented by a surface-mesh

structure as shown on the left (note: This is NOT

an STL representation, but rather NURBS surface

patches) Hexagonal ‘bio-inspired’ tile

https://www.ladybug.tools/
https://standards.buildingsmart.org/IFC/RELEASE/IFC2x3/TC1/HTML/ifcgeometricmodelresource/lexical/ifcmanifoldsolidbrep.htm

We Make Innovation Work
www.padtinc.com

• Because of the iconvenient nature of this manifold B-rep structure (each

triangular facet is an individual surface), use SpaceClaim to make a named

selection of the surfaces shown below (selected by box-select)

• We’ll refer to this named selection to apply the thermal loading

Create The ANSYS Model

We Make Innovation Work
www.padtinc.com

Create The ANSYS Model

• Once the geometry has been imported, define a Workbench transient heat transfer model

• Select the ‘ceramic5’ material from the thermal materials library

We Make Innovation Work
www.padtinc.com

Create The ANSYS Model

• Make sure to use MKS units for this problem

We Make Innovation Work
www.padtinc.com

Create The ANSYS Model

• Define a Convection and Heat Flux on the named seelction we created earlier

• These are just placeholders –these loads will be replaced with code. The reason for doing this is to

create ‘surface-effect’ elements in ANSYS. We will use these elements to interpolate the external heat

flux data later

• Also define a fixed

‘interior’

temperature on the

flat surface

We Make Innovation Work
www.padtinc.com

Create The ANSYS Model

• Finally, define the solution end-time to coincide with the end of the heat flux data we imported

• Reviewing that data,we see that we have heat flux data for each of 12 one-hour periods (starting at

7am)

• To keep the project simple, we’ll stick with temporal units in seconds, but this means that our analysis

will start at 0 seconds and end at 12*3600 = 43200 seconds

We Make Innovation Work
www.padtinc.com

Interpolate the Imported Flux Data onto the ANSYS model

• Insert an empty command object

• In the details view, select ‘Issue Solve Command, No’

• Run this model (let Workbench create a default mesh)

• Don’t worry about the red lightning bolt. Workbech is complaining that it doesn’t have any results to

postprocess. That’s fine (once again, this is just a placeholder for now)!

• The purpose is to just create an input file we can use to import the ANSYS model into Python

We Make Innovation Work
www.padtinc.com

Interpolate the Imported Flux Data onto the ANSYS model

• Now, execute the following lines in the open Python session (this will expose the Workbench model for

us in Python):

#convert units to meters:

verts = verts/1000

#create grid starting at face 705 (the first one whose radiation isn't zero)

radmesh = pv.UnstructuredGrid({5:faces[705:]},verts)

mapdl = launch_mapdl(run_location=mapdlpath,override=True)

mapdl.input("ds.dat")

#mapdl.mesh.ekey #lists the element types

sindex = np.where(mapdl.mesh.grid['ansys_etype']==2)[0]

ansmesh = mapdl.mesh.grid.extract_cells(sindex)

for i in range(incrad.shape[1]):

dstr = 'F'+str(i)

#starting at row 705 because rows 0 thru 704 are side and back (no radation)

radmesh[dstr] = incrad[705:,i]*1000 #convert from kw/m^2 to w/m^2

#Need to extrapolate cell data to vertices before interpolation --that's what the line

below does

radmesh = radmesh.cell_data_to_point_data(pass_cell_data=True)

Fsampled = ansmesh.interpolate(radmesh,sharpness=2,radius=0.005)

Fsampled = Fsampled.point_data_to_cell_data(pass_point_data=True)

We Make Innovation Work
www.padtinc.com

Interpolate the Imported Flux Data onto the ANSYS model

• The lines on the previous slide (lines 20 through 38) do all the ‘heavy lifting’ for us. So, we’ll explain

them

• Create a PyVista

unstructired grid object

(radmesh) from the Rhino

tile model defined in the

spreadsheet

• Create a second PyVista

unstructured grid object

from the elements on

which to appy a heat flux

in the Workbench model

(ansmesh)

• Fill the radmesh objec

with the incident

radiation data

• Interpolate the data from

the Rhino mesh to the

ANSYS mesh

We Make Innovation Work
www.padtinc.com

Interpolate the Imported Flux Data onto the ANSYS model

• You can view the Pyvista unstructured grid objects...

PyVista Unstructured

Grid object radmesh

(original Rhino model)

PyVista Unstructured

Grid object ansmesh

(Ansys heat flux surfaces)

We Make Innovation Work
www.padtinc.com

Interpolate the Imported Flux Data onto the ANSYS model

• From the ANSYS model, we’re only insterested in the ‘surface effect’ elements

• Lines 28 and 29 of slide 18 isolate and extract these from the larger ANSYS model.

• After executing line 26 (reading the Workbench ds.dat file), ansys.mapdl.core re-creates a faithful PyVista

representation of the ANSYS model stored in the ‘mesh’ object

• We can quickly query various properties of the mesh. Users may be curious how we knew that we only need extract

element type 2, for example. The mesh.ekey array contains an array listing of element types in the model

• Element type 152 are surface effect elements. Users can quickly select any or all of the element types in the model

the way we do in lines 28 and 29 and plot them. It should then be clear by visual inspection which element types are

the ones we’re after

type1 type2
type3

• heat flux

• convection

We Make Innovation Work
www.padtinc.com

Interpolate the Imported Flux Data onto the ANSYS model

• In line 38 on slide 18, we interpolated the incident radiation data (which exists in the form of 12 arrays

within the unstructured grid object) onto the ansys mesh and renamed the result to a new

unstructured grid object called ‘Fsampled’

• We can verify this by typing ‘Fsampled.array_names’. You should see all the original array data (supplied

by dpf.mapl.core),as well as the twelve radiation arrays...

• The ‘radius’ field of the interpolate method

refers to the expected distance over which

interpolation occurs between points. This

should generally correspond to element size

• See the documentation for more on these

options

https://docs.pyvista.org/api/core/_autosummary/pyvista.DataSetFilters.interpolate.html

We Make Innovation Work
www.padtinc.com

Interpolate the Imported Flux Data onto the ANSYS model

• Finally, we can directly compare plots of the original incident radiation data and mapped data side-by-

side by executing the following code

p = pv.Plotter(shape=(1,2))

p.subplot(0,0)

leg1 = {'title':'Original'}

p.add_mesh(radmesh,scalars=radmesh.point_data['F4'],cmap='rainbow',scalar_bar_args=leg1,show_edges=True)

p.subplot(0,1)

leg2 = {'title':'Mapped'}

p.add_mesh(Fsampled,scalars=Fsampled.point_data['F4'],cmap='rainbow',scalar_bar_args=leg2,show_edges=True)

p.show()

• You can compare different times by

replacing the ‘F4’ (the fourth time

step) above with ‘F#’ where # ranges

from 1 through 12

We Make Innovation Work
www.padtinc.com

Export the Interpolated Heat Fluxes to the User_Files folder

• Cut-and-paste the final bit of Python code into your session to write the heat fluxes to the Workbench

user_files folder.

for time in range(incrad.shape[1]):

fname = f"mk_sfe{str(time+1)}.mac"

fpath = userdir + f"\\{fname}"

with open(fpath,'w') as f:

tstr = f"F{str(time)}"

for i,fval in enumerate(Fsampled.cell_data[tstr]):

anstr = f"sfe,{str(ansmesh['ansys_elem_num'][i])},1,hflux,,{str(fval)}\n"

f.write(anstr)

• This writes the interpolated heat fluxes to a set of macros that applies these using the APDL

SFE command

• Within the 12 macros, each SFE command applies the heat flux as a flux over each surface

element face individually

We Make Innovation Work
www.padtinc.com

Transfer Hourly Surface Convection Data

• Referring to the spreadsheet, we see that there is a worksheet called ‘Outdoor Temp (dry bulb)’

• We’ll use this to apply the surface convection terms to the same surfaces that receive incident radiation

• Although we could use the same techniques we’ve shown here (write macros using the imported data),

it may be more appealing to some users to cut-and-paste the worksheet inputs directly into the

Workbench

• Simply do some additional calculations in the Worksheet to get the data into the 3-column form

needed by Workbench

• This is data we’re given

• this is the form we’ll

need to apply these as

bulk temperatures in a

convection load (let’s

assume a constant 5

W/m^2 C heat transfer

conefficient)

We Make Innovation Work
www.padtinc.com

Transfer Hourly Surface Convection Data

• After cutting-and-pasting...

We Make Innovation Work
www.padtinc.com

Tie everythng together with a Command Object...

• Finally, cut-and-paste the following into your Command object window...

fini !get out of solution mode

/psearch,_wb_userfiles_dir(1) !search for macros in user_files folder

/prep7 !get into pre-processor mode

esel,s,type,,2 !select elements with applied flux

nsle !select all nodes attached to these elements

sfdele,all,all !delete all previously applied fluxes on selected nodes

allsel, !re-select everything

/solu !get back into solution mode...

*do,i,1,12 !loop through 12-hour day (defined now in seconds)...

time,i*3600 !define time (in seconds) for this load step

/nopr !suppress writing to log file

mk_sfe%i% !apply mapped incident radiation on elements with previously applied flux

/gopr !un-suppress writing to log file

solve !solve this load step

*enddo !complete loop

We Make Innovation Work
www.padtinc.com

Solve...

• One thing to pay attention to is that we’re solving this model with the commnad object

with 12 load steps (review the code in the last slide)

• If you keep the default ‘Output Controls’ settings under ‘Analysis Settings’, ANSYS will

provide you with additional output substeps. If only want 12 results corresponding ot

each load step, select ‘Store Results At Last Time Point’

We Make Innovation Work
www.padtinc.com

Final Notes

• Importing and mapping loading and other mesh-based model inputs from other (dissimilar) models –whether

within ANSYS or from without –can be very callenging. Especially when considering multiple analysis time-

steps

• Fortunately, the relatively new DPF (Data-Processing Framework) come to the rescue!

• We feel that not only is this a reasonable and efficient choice for transferring model data from Rhino to Ansys,

but the use of PyVista unstructured grid object allows for very efficient data mapping over multiple time steps

• For the model in this example, the actual transfer occurs in seconds. And this scales well with model size

• Without DPF, this last capability is challenging even within ANSYS Workbench

• In this article, we provide all the files and code used in the example for the ANSYS-DPF workfow

• We also povide all the jpeg images (some of which are described in the Appendix) that Nathan created for the

alternative workflow

We Make Innovation Work
www.padtinc.com

Appendix
An Alternative Workflow

• Some users (especially Rhino users) may not feel comfortable installing and learning the ANSYS DPF Python

tools

• For those users, Nathan suggests a workflow similar to the one we outlined, but replacing the ANSYS DPF with

programming tools available to Rhino users

• We compare the steps in each below

Alternative Worflow

1. Export Grasshopper model wthout radiation

2. Create the ANSYS model (slide 11)

3. Import ANSYS surface mesh into Grasshopper

4. Generate and export heat fluxes and other

loads to ANSYS

5. Incororate imported loads and run with

command snippet (slide 25)

ANSYS DPF Worflow

1. Import heat flux data in Python (slide 7)

2. Create the Ansys model (slide 11)

3. Import and interpolate heat flux (slide 17)

4. Export heat fluxes and other loads to ANSYS (slide 23)

5. Incororate imported loads and run with command snippet

(slide 25)

We Make Innovation Work
www.padtinc.com

• There are some key differences in the two workflows

• In the ANSYS-DPF workflow, we start by importing a mesh-based model created in Ladybug into ANSYS (it always creates its

own mesh. And that’s what we originally imported in this example)

• In the alternative workflow, we export the Grasshopper-generated data directly and read that into ANSYS (bypassing

Ladybug at first. This is step 1)

• We then create the placeholder ANSYS model the same way we did in slides 11 thru 16 (step 2) and export. Experienced

programmers may simply parse the ensuing ds.dat file, but we’ve supplied another macro called ‘mk_exportmesh.mac’ to

export the surface effect elements (it can be invoked as a command object or from a separate MAPDL session)

• Then, we we import the ANSYS mesh into Grasshopper (step 3)

Appendix
An Alternative Workflow

We Make Innovation Work
www.padtinc.com

• Nathan provides the following helpful c# to import the ANSYS model (starting with the text files crated by

‘mk_exportmesh.mac’)

Appendix
An Alternative Workflow

We Make Innovation Work
www.padtinc.com

• Nathan also provides the following helpful c# to export the heat flux data from Ladybug:

Appendix
An Alternative Workflow

	Importing and Mapping Model Load Data�Using ANSYS DPF
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32

