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Background 

• A subtle, yet very important practical issue in building, solving, and interpreting finite 

element models is the occurance of singular points –locations at which some solution 

quantity (usually stress or strain) fails to converge to a finite value upon mesh refinement

• Historically, this is an important problem in the field of differential equations –especially 

numerical solutions to these equations.

• Though well understood mathematically, engineers –especially novices, struggle with the 

idea that certain locations in a finite element model produce results which may not be 

reliable –even in models which may be perfect in every other way.

• This issue is so pervasive that users will have no problem finding literature and tutorials on 

the subject (see, for example here and here)

• However, while most of the literature does a fine job of providing guidelines and remedies 

for handling such situations, we’ve found very little which helps users identify where and 

why they occur (and will provide the links we have found where appropriate)

• In this article, we’d like to explore this in more detail (where and why geometric 

singularities occur)

https://www.linkedin.com/pulse/stress-singularities-concentrations-mesh-fea-marcos-ac%C3%ADn-gonz%C3%A1lez
https://www.comsol.com/blogs/singularities-in-finite-element-models-dealing-with-red-spots/
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Definition: Mesh Convergence 

• To begin, we’d like to define exactly what we mean by a geometric singularity in a finite element 

model. We’ll do so in terms of the mesh convergence rate

• In the absence of singularities or other pathologies, finite element solutions should exhibit the 

following error* in the computed stress, σh[1]:

*This is a classical result in the theory of finite elements. This monomial depence on rate of 

convergence and the degree of the basis functions used is a major reason for the widespread 

adoption and success of the method historically

끫뢤∞ = 끫븜 − 끫븜ℎ 끫롾∞ ≤ 끫롬ℎ끫뢺+1 끫븜(끫뢺+1) 끫롾∞ • This term is 

independent of the FE 

model

끫뢤∞ = 끫븜 − 끫븜ℎ 끫롾∞ ≤ 끫롮ℎ끫뢺+1
• � ∞ is the ‘infinitey norm’. It just measures the maximum absolute value over a set

• h is the element size. The last term (끫븜(끫뢺+1)) means the ‘pth+1’ deriviativie of σ
• If we just assume this value is bounded for a given problem, we can replace (1) with (2):

(1)

(2)

• Since p is the degree of the underlying FE shape functions being used, (2) tells us that the expected 

error in the maximum absolute value of stress shold grow as a monomial function of the element size 

raised to a power of underlying shape functions plus one

https://pi.math.cornell.edu/%7Edemlow/425/chap5.pdf
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Definition: Mesh Convergence 

• If the underlying element shape functions are of 2nd order (quadratic), then we could expect a (cubic 

monomial) curve that looks like the one below

• Instead of plotting the error as a function of element size, we could also plot the error vs. number of 

elements (or number of degrees of freedom) by noting that, in general the number of elements, n is 

inversely proportional to element size, h:

element size, h

e
rr

o
r

끫뢶 ∝ 1/ℎ ≈ 끫뢠/ℎ

number of elements, n

e
rr

o
r

끫뢤∞,끫뢶 = 끫븜 − 끫븜끫뢶 끫롾∞ ≤ 끫롰끫뢶끫뢺+1 (3)

• It’s also helpful to note that the number of 

elements, n is bounded from below (n ≥ 1), 

because ℎ ≤ Ω
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Definition: Mesh Convergence 

• where Ω is the model domain. In other words, the maximum element size, h is bounded by the model 

size (can’t have less than 1 element in the model)

• Finally, we can subtract the exact solution, σ from both sides to obtain:

• We expect a stress ‘convergence’ graph to look like a plot of (4) (note that there is some sign ambiguity in 

(4). We chose the form  which users will encounter most often when performing convergence studies)

(4)끫븜끫뢶 끫롾∞ ≤ 끫롰끫뢶끫뢺+1 − σ 끫롾∞

σ

number of elements, n

st
re

ss

• Now, we won’t know what σ 

is in most cases, but we 

should still see a curve 

converging toward it

• When this is not the case, 

we’ll know we have a 

problem
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Definition: Mesh Convergence 

• Of course, we can produce a graph like (4) in Ansys manually –by graphing the maximum stress in a 

model vs. number of elements for successive values of grid refinement

• But Ansys offers a convenient tool which generates curves almost like (4) automatically

• This is called the ‘convergence’ tool (simply right-click on any result object of interest in the 

Mechanical tree outline and insert->Convergence)

• You set the number of points on every 

‘convergence’ plot by setting the ‘Max 

Refinement Loops as shown below
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Definition: Mesh Convergence 

• Below is a graph of the convergence of von Mises stress for a particular model in Ansys (the details 

aren’t important for now) for four refinement ‘loops’ (levels of refinement)

• refinement is carried out according to 

the stress a posteriori error* 

• Most refinement therefore occurs 

locally around the highest stress

• users specify the maximum ‘Absolute Change’ 

allowed during a refinement loop to determine 

whether convergence is achieved

*an  important algorithm beyond the scope of 

this article. See here for details

https://www.sciencedirect.com/science/article/pii/0377042794902909
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Definition: Geometric Singularity 

• Now we’re in a position to define what we mean by a geometric stress singularity

• A geometric singularity is the source of any mesh-refinement convergence plot in which the quantity of interest 

fails to converge (it violates equation (4). See below)

• The word ‘geometric’ (we use that to distinguish this phenomenon from other sorts of numerical or theoretical 

convergence issues) may refer to the loading or boundary condition pattern as well as the geometric domain*

• This singularity happens to be caused by a point (nodal) force load, which should beg some questions:

1. Are point loads always singularities?

2. If the answer to 1. is ‘no’, when can we expect them?

3. Can other sorts of boundary conditions or geometry lead to this behavior?

• An actual stress 

singularity!

*unfortunately, there are other possiblities –such as a material discontinuity – 

which may cause convergence failure, but those are beyond the current scope
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Motivation: A Mystery To Be Solved 

• To help further motivate this article, consider a thin, quarter-symmetric circular plate (using plate 

elements having 6 DOFS: ux,uy,uz,rotx,roty,rotz) loaded and constrained as shown in the two cases 

below

A. Transverse load at center. Symmetry on cut faces*. Fixed on circular boundary

B. Transverse load at center. Fixed on circular boundary (no symmetry)

• The mystery:  Case A has a geometric singularity. Case B doesn’t. Why?

F
F

A. B.

• The odd ‘s’ shape of this 

curve has to do with the fact 

that element refinement is 

not occuring uniformly (a 

downside to using the 

automated convergence tool)

• symmetry

• symmetry

• Converges
• Diverges

*Note that the mesh 

convergence tool will not work 

on regions with symmetry 

boundary conditions.

• We get around this by 

applying normal 0 

displacements along cut 

faces and parallel 0 

rotations along the same 

faces 
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Introduction and Preliminaries

 • We have some work to do before answering the questions on the previous slide

• To start the discussion, it’s important to point out that we need at least two spatial dimensions for a geometric singularity 

to exist (this is also partly the reason for naming it a ‘geometric’ singularity)

• Thus, a solution field has to be a function of the form f(x,y) or f(x,y,z) in order to have a gometric singularity

• All readers doubtless already have an intuition that these singularities have something to do with abrupt, or ‘step’ 

changes in geometry or loading –and so they do. But for most domains with fewer than two canonical dimensions, no 

load or constraint can be so abrupt as to cause a stress singularity*

• This is because all result quantities and their derivatives are a function of a single spatial direction (f(x) or f(y)) and how 

abruptly a solution can change between elements is strictly governed by the continuity of the result (in the case of finite 

elements: chape functions with C(1) or higher continuity)

• In other words, all loads and boundary conditions in one spatial direction act to either define or sub-divide the associated 

boundary value problem for which bounded solutions exist

• Another way of putting this: Point loads and Dirichlet boundary conditions all produce the same types of well-behaved, 

bounded results in a single spatial dimension

x

y F
*An exception would be 2D 

membrane elements 

(shell209). For that case, 

everything we’ll say about 

membranes in 3 dimensions 

applies in 2
• No singularities here
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Geometric Singularities: Type I

 Divergence of Primary Solution Variable

 

• By far the most severe type of geometric singularity would be one which either invalidated the results, or 

(worse) prevented one from obtaining a result in the first place (let alone a verifiable one)

• We’ll name these ‘Type I’ singularities, and they arise from a special sub-class of differential equations (‘elliptic‘ 

equations). One such equation is Poisson’s Equation in the primary variable of interest (the one we solve for in 

the resulting algebraic system). They are characterized by mesh convergence failure of this variable (and when 

this fails to converge, so will all its derivatives)

• Among Ansys’ structural element types, only a few solve Poisson’s Equation for deflection*. These fall in to a 

category we’ll call ‘Reduced-Order’ elements in recognition of the fact that, at least for problems in elasticity (in 

three dimensions), these element-types do not carry the full elastic strain tensor corresponding to the spatial 

dimensions of the problem

• Poisson’s Equation for elastic deflection is used to model membrane problems. So, the first problem we’ll look 

at is a circular membrane subject to transverse central point load

Reduced-Order Elements

x

z

deflection, w

*Equations of the form:끫뷶2u=f(r,θ)

F,u

• Circular menbrane wth a central point load, F and 

transverse deflection response, u
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Geometric Singularities: Type I

 Divergence of Primary Solution Variable

 Reduced-Order Elements

*Leissa, A.W. (2001), Singularity considerations in membrane, plate and shell 

behaviors. International Journal of Solids and Structures, 3341-3353

• The differential equation for this problem [1] 

can be simply derived by applying Newton’s 

third law to an arbitrary radius, r:
ϕ

T

r

F,u

끫룀끫룀끫뢶끫븢 ≈ 끫룂끫룂끫뢶끫븢 = −끫븪끫븪끫븪끫븪
−끫롲 + 2끫븖끫븪끫븖끫룀끫룀끫뢶끫븢 = 0 (5)

(6)

• Now, substitute (6) into (5) and solve for the slope:끫븪끫븪끫븪끫븪 = − 끫롲2끫븖끫븖 1끫븪 (7)

R

u

https://www.sciencedirect.com/science/article/abs/pii/S0020768300002626
https://www.sciencedirect.com/science/article/abs/pii/S0020768300002626
https://www.sciencedirect.com/science/article/abs/pii/S0020768300002626
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Geometric Singularities: Type I

 Divergence of Primary Solution Variable

 Reduced-Order Elements

• Differentiating (7) produces Poisson’s 

Equation:

• These equations tell us that u(0) = ∞ (Equation (8)), and 
끫븪끫룄끫븪끫뢾 0 = ∞(Equation (7))

• In other words, we should expect any finite element approximation of this problem to 

result in a geometric (or some type of) singularity, as both the primary solution variable 

(deflection in this case) and the strain are unbounded at r=0

끫븪2끫븪끫븪끫븪2 = 끫롲2끫븖끫븖 1끫븪2
• But in this case, we can solve (7) directly to obtain (making use of 

the fact that u@(r=R)=0: 끫븪 = 끫롲
2끫븖끫븖 ln 끫븪끫뢊 (8)
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Geometric Singularities: Type I

 Divergence of Primary Solution Variable

 Reduced-Order Elements

• Trying to simulate the circular 

membrane (by setting the 

‘membrane only’ option on 

surface shell elements) using 

quarter symmetry, we 

discover a peculiar fact about 

this problem 

uy=0

ux=0

All Dofs 

Fixed

membrane 

symmetry

membrane 

symmetry

Fz @ r=0

¼ Symmetry Membrane Model

• Attempting to solve this problem as a purely 

linear one (small deflections) results in a 

null solution!
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Geometric Singularities: Type I

 Divergence of Primary Solution Variable

 Reduced-Order Elements

• The reason for the null solution is that shell/membrane elements in Ansys 

cannot solve equations like (7) or (8) with the small deflection assumption

• With this assumption, the transverse load, F acts at a right angle to the 

undeformed plane of the membrane and hence cannot act to distort it

• The only way to simulate the evolving strain reaction to the transverse load 

(the membrane has to strectch to accomodate a vertical displacement at r = 

0) is turn on “Large Deflection” effects (under Analysis Settings)

• When we do this, we get a the following result

• Unconverged 

maximum 

deflection =1.35 

x 1011 mm
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Geometric Singularities: Type I

 Divergence of Primary Solution Variable

 Reduced-Order Elements

• We can understand this as Ansys trying to approximate the 

unbounded solution of Equation (8)

• If a linear-strain (small deflection) solution existed, we would 

expect a large (but still ‘bounded’) deflection. And this deflection 

would grow in an unbounded way with mesh refinement

• But nonlinear Newton-Raphson iterations of the membrane 

problem attempt to reduce the error between successively 

perturbed linear solutions –in other words, for the given mesh in 

this case, it attempts to reduce the error in approximating ∞ --

which isn’t possible with finite precision

• To see what a linear solution of the Poisson Equation would look 

like, we can attempt to solve an analogous problem* in 

conductive heat transfer

Boundary 

fixed at room 

temperature

Heat applied to single point at r=0

2D ¼ symmetry heat conduction through cylinder

• Governing Equation:−끫뢰끫뷶2끫븖 = 0

*not quite analogous: This example results in a Laplace Equation. But it 

still retains the qualities we wish to exploit
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Geometric Singularities: Type I

 Divergence of Primary Solution Variable

 Reduced-Order Elements

• It’s worth dwelling for a moment on the solution to this equation 

for point sources in 2 dimensions

• The governing equation (from the previous slide –obtained by 

omitting the transient term of the heat equation) leads directly 

to Fourier’s Law (upon integration)

• And once again, T(0)=∞ and 
끫뢢끫뢎끫뢢끫뢾 0 = ∞

• This is indeed another Type I singularity

−끫뢰끫뷶끫븖 = 끫뢼
−끫뢰 끫븪끫븖끫븪끫븪 = 끫뢈2끫븖끫븪끫룂

끫븖 끫븪 = 끫븖0 + 끫뢈
2끫븖끫뢰 끫뢲끫뢶 끫뢊끫븪

• but the heat flux q (heat per unit time 

per unit area) at any location r from the 

origin is simply the point load Q (heat per 

unit time) divided by the area

• for a disk of unit thickness t, then we can 

rewrite Equation (9) as Equation (10)

• Finally, the solution to transient 

heat conduction problem in 2D 

with a point source is:

−끫뢰 끫븪끫븖끫븪끫븪 = 끫뢈2끫븖끫븪
(9)

(10)

(11)
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Geometric Singularities: Type I

 Divergence of Primary Solution Variable

 Reduced-Order Elements

• Returning to the ¼ -symmetry membrane problem, let’s explore further

• What happens if we replace the transverse applied force with a displacement?

• We do this to enforce ‘boundedness’ of the primary solution variable. What about the 

derivatives?

• Replacing the 

load with a 

constant 

displacement (to 

force the 

primary variable 

to be 

bounded)...

• ...the stress and strain are unbounded, even while the 

displacement converges. This is new type of singularity

• So, singularities in which the primary variable converges 

while it’s deriviates do not DO exist, and we’ll look at 

them next...
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Geometric Singularities: Type II

 Convergence of Primary Solution Variable –Divergence of Derivatives

 Reduced-Order Elements

• There are certain types of finite elements which may experience geometric singularities in which the 

primary soluton variable converges, but its derivatives do not. This type of behavior is typically found 

in plate/shell elements, so we’ll take a look at those now

• We’ll call this a ‘Type II’ singularity. As we’ll see, elastic shell elements tend to exhibit this type of 

singularity –but not always where one might expect them!

• A major theme we want to stress here is that zero-dimensional point loads are not, in and of 

themselves, the source of such singularities –their relationship to the associated differential equation 

is

• Let’s return to the ¼-symmetry plate/shell on slide 9. We’re now ready to tackle the mystery 

presented in that slide: The symmetry model below left generates a Type II singularity, while the 

model without symmetry below right converges absolutely (no singularities!)
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Geometric Singularities: Type II

 Convergence of Primary Solution Variable –Divergence of Derivatives

 Reduced-Order Elements

• Solving the differential equation for plate problems is significantly more involved than solving the 

simple axisymmetric Poisson problems we’ve dealt with so far

• Even with axisymmetry, the resulting equations have more terms to deal with. Instead of providing a 

crash course in plate theory (well beyond the scope of this article), we’ll simply refer readers to our 

earlier reference from slide 12 ([1]. For a more comprehensive treatment, see [2])

• From the references above, the analytic deflection, u in problem A. of the previous slide is:끫븪 끫븪 =
끫롲
8끫븖끫롮 끫븪2끫뢲끫뢶끫븪 + 끫롲

16끫븖끫롮 끫뢊2 − 끫븪2

• In spite of the appearance of the troublesome logarithmic term, this solution is bounded at 

r=0. Specifically: 끫븪 0 = 끫븪끫뢴끫뢴끫뢴 = 끫롲끫뢊2
16끫븖끫롮

• where, D (the “plate stiffness” or “flexural rigidity”) is given by:끫롮 =
끫롰끫룂3

12(1 − 끫븐)
(12)

(13)

https://www.sciencedirect.com/science/article/abs/pii/S0020768300002626
https://pkel015.connect.amazon.auckland.ac.nz/SolidMechanicsBooks/Part_II/06_PlateTheory/06_PlateTheory_Complete.pdf
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Geometric Singularities: Type II

 Convergence of Primary Solution Variable –Divergence of Derivatives

 Reduced-Order Elements

• but the bending moments (and corresponding stresses) involve 
끫븪2끫룄끫븪끫뢾2 and 

1끫뢾 끫븪끫룄끫븪끫뢾 (we’ll come back to 

this later), and these expressions include isolated terms in lnr and 1/r

• So, while the deflection u(0) is bounded, the stresses aren’t

• This generates a Type II singularity for this problem as we can easily verify in Ansys

• stress 

diverges

• displacement 

converges
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Geometric Singularities: Type II

 Convergence of Primary Solution Variable –Divergence of Derivatives

 Reduced-Order Elements

• but look what happens when we simply delete (or suppress) the boundary conditions on the 

symmetry edges

• Both the stress and deflection converge(!)

• stress 

converges

• displacement 

converges
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Geometric Singularities: Type II

 Convergence of Primary Solution Variable –Divergence of Derivatives

 Reduced-Order Elements

• Since diving into plate theory is beyond the scope of this article, we’ll try to pick out the relevant 

characteristics of the governing equations to help explain why this happens (while pointing to online 

references)

• First, note that Ansys allows users to split the shell behavior into “Membrane Only”(which we utilized for 

the model on slides 14 and 15) and “Membrane and Bending”

• We’ll focus on the “Bending” portion. To keep things simple, we’ll use a “thin plate” formulation (this is NOT 

Ansys’ formulation, but the points we make about strain and curvature still hold for the most part. We’ll 

draw from references here and here)

• Importantly, 

notice there’s 

no z-

component of 

stress or strain

http://what-when-how.com/the-finite-element-method/fem-for-plates-and-shells-finite-element-method-part-1/
https://community.wvu.edu/%7Ebpbettig/MAE456/Lecture_10_Shell_Elements_b.pdf
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Geometric Singularities: Type II

 Convergence of Primary Solution Variable –Divergence of Derivatives

 Reduced-Order Elements

• In pure bending, all stresses and strains are proportional to a planar gradient of the slopes 끫븆끫뢴 =끫븪끫븪끫븪끫뢴and 끫븆끫료 = 끫븪끫븪끫븪끫료  

• But “gradient of slope” has another name: Curvature

• From this reference:

• Users may think of plate elements as 

beams which bend in two directions

• This results in a (potentially) bi-directional 

curvature field. This bi-directionality is the 

culprit behind stress singularities in 

plates/shells

https://pkel015.connect.amazon.auckland.ac.nz/SolidMechanicsBooks/Part_II/06_PlateTheory/06_PlateTheory_Complete.pdf


We Make Innovation Work
www.padtinc.com

Geometric Singularities: Type II

 Convergence of Primary Solution Variable –Divergence of Derivatives

 Reduced-Order Elements

• We can understand what’s going on in slides 21 and 22 by relating the strain field to their eigenvalues

• Since the curvature and strain are proportional to one another, the displaced shape can tell us what’s 

happening

Case A Vector Principal 

Elastic Strain

• The model with the 

singularity (case A) has 

a strain field whose 

distinct eigenvalue 

directions ‘point’ 

toward the singularity

• While case B’s strain 

eigenvalues decompose 

to parallel orthogonal 

values as shown in next 

slide...

Case A Displacement
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Geometric Singularities: Type II

 Convergence of Primary Solution Variable –Divergence of Derivatives

 Reduced-Order Elements

• Note that around the external force, the principal elastic strain field is parallel

• A parallel eigenvector field implies zero Gauss Curvature (for shell elements)

Case B Displacement
Case B Vector Principal Elastic 

Strain

• This gives us a new ‘quick’ check 

of whether or not we have a type 

II singularity

• If the Gauss Curvature around a 

candidate location is zero, we 

cannot have a type II singularity(!)

• The only way to check this directly 

in Ansys is to calculate the 

principal curvatures from the k11, 

k22, k12 (smisc items 12 thru 14)

• But we can indirectly check it the 

way we’re doing here (via the 

connection between principal 

curvature and principal strain

Vector Principal Strain

https://en.wikipedia.org/wiki/Gaussian_curvature
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Geometric Singularities: Type II

 Convergence of Primary Solution Variable –Divergence of Derivatives

 Reduced-Order Elements

• Some users may still be unsure why the case B displaced shape results in zero Gauss Curvature 

around the applied force

• The reason is that on unconstrained, convex boundaries, the lowest internal energy state has no 

Gauss Curvature (i.e. only these configurations allow the material to bend in only a single direction)

• We can quickly check this by redefining the boundary loads and boundary conditions as below

Case C

F

• stress 

converges

• displacement 

converges
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Geometric Singularities: Type II

 Convergence of Primary Solution Variable –Divergence of Derivatives

 Reduced-Order Elements

• A further check of the displacement and vector strain results confirm our conclusions

• Case C Vector 

Elastic Principal 

Strain

• Zoom in and increase 

contour levels to see 

that the displacement 

gradient is becoming 

parallel around the 

load application 

location
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Geometric Singularities: Type II

 Convergence of Primary Solution Variable –Divergence of Derivatives

 Reduced-Order Elements

• When a point load is applied to ANY location other than a convex edge or corner, we can expect the 

curvature (and hence the bending strain) near the load to have two distinct components –and thus 

expect a type II singularity

F

w

L

• stress 

diverges

• displacement 

converges

W/L = 2
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Geometric Singularities: Type II

 Convergence of Primary Solution Variable –Divergence of Derivatives

 Reduced-Order Elements

• ...Unless it doesn’t! Simply decreasing the width-to-length ratio of the cantilever leads to a situation 

which DOES converge

• This is why we chose the definition of ‘geometric singularity’ the way we did (slide 8)

• stress 

converges

• displacement 

converges

W/L = 1/3

F

w

L
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Geometric Singularities: Type II

 Convergence of Primary Solution Variable –Divergence of Derivatives

 Reduced-Order Elements

• Thus, the convergence of stress/strain in the vicinity of an applied point load at a non-convex 

boundary* of a rectangular plate of dimension w x L x h (width x length x thickness) depends on the 

ratio of overall width to length w/L

• The reason for this is that, although the strain/curvature field exhibits the same fundamental pattern 

as the case A vector field of slide 25, the component along the long side is so much greater than the 

short side that the plate behavior approaches that of a beam

*and all points within the domain have the same convergence behavior as non-convex points on a free boundary
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Geometric Singularities: Type I or Type II

Reduced-Order Elements

• The recurring theme for plates/shells, is that the principal strain/curvature field requires 

two linearly independent components (it must have nonzero Gaussian Curvature) in the 

vicinity of the candidate singularity in order to qualify as a singularity

• This is demonstrated dramatically by simply replacing the fully fixed (clamped) edge of the 

1/4 symmetry point-load shell of slide 22 with two clamped vertices as below

F

• stress 

diverges

• displacement 

diverges

• This happens because the 

maximum stress is now 

associates with the 

clamped vertices

• Since these can support 

moments, the curvatures 

near these points (which 

must be multi-directional 

for this model) goes to 

infinity
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Geometric Singularities: Type I or Type II

 
Reduced-Order Elements

• In fact, users should verify for themselves that ANY applied point moments in plates/shells 

induce either Type I or Type II singularities (depending on boundary condition and plate 

dimensions) as shown below by returning to the ¼-symmetry circular plate  of slide 22 

with clamped boundary and replacing the central point force with a moment

• stress 

diverges

• displacement 

converges

M
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Geometric Singularities: Type I or Type II

 
Reduced-Order Elements

• So far, we’ve looked at point forces and moments on plate/shell models. What about other 

types of singular points?

• Any situation in which a nonzero Gauss Curvature field is interrupted by a material point 

will result in a Type II singularity

• stress 

diverges

• displacement 

converges

• Type II 

singularity in 

re-entrant 

corner

F
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Geometric Singularities: Type I or Type II

 
Reduced-Order Elements

• From what we’ve discussed so far, users should be able to predict the likely location of 

singular points in an arbitrary plate/shell model configuration.

• For example, in the model below, we should be able to make the following predictions

F

• Candidate singular points (three re-

entrant corners)

• Convex corner load is NOT a 

singular  point

• Nonzero Gauss 

curvature is most 

likely in this region 

(due to twisting)

• And so one of these 

two re-entrant corners 

is likely to be a 

singular point
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Geometric Singularities: Type I or Type II

 
Reduced-Order Elements

• Running a convergence study on this model confirms our hunch

F

• stress 

converges

• stress 

diverges
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Geometric Singularities: Type I or Type II

 
Reduced-Order Elements

• And once again, we can gain  further insight from  a plot of vector principal stress or  strain 

as below

Vector Principal Strain

• Locations of high 

stress gradient 

stand out in relief 

in a vector 

principal strain 

plot

• Singularity!
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Geometric Singularities: Type I or Type II

 
Reduced-Order Elements

• What about line loads?

• In the model below, a line load (units N/m) is applied over a short line 

segment of length, l parallel to the short dimension, L.

• stress 

converges

• displacement 

converges

F
l

L
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Geometric Singularities: Type I or Type II

 
Reduced-Order Elements

• Line loads of any finite length  and configuration converge…

• stress 

converges

• displacement 

converges

F

l

w
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Geometric Singularities: Type I or Type II

 
Reduced-Order Elements

• …All result values continue to converge for any combination of line loads…

F

• stress 

converges

• displacement 

converges
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Geometric Singularities: Type I or Type II

 
Reduced-Order Elements

• We can now answer the questions raised on slide 8 for plate/shell elements:

1. Are point loads always singularities?

A: No. Not on convex edges or corners

2. If the answer to 1. is ‘no’, when can we expect them?

 A: On non-convex (concave or flat) edges and interior points

1. Can other sorts of boundary conditions or geometry lead to this behavior?

 A: We can expect them in re-re-entrant corners which experience twisting, 

point loads at locations other than convex edges and corners, and at any 

locations with applied point moments (or at fixed points which support moment 

reactions)
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Geometric Singularities:

 
Full-Order Elements

• Plate/Shell elements represent what we’ve been referring to as ‘reduced-order’ elements. These are 

governed by an underlying differential equation whose solution does not require or support the full elastic 

strain tensor.  This is ultimately the reason for some of the behaviors described in the previous slides (we’ll 

discuss this more later)

• The situation changes for elements which DO support the full elastic strain tensor. If we replace any of the 

models  described so far with full-order elements  (by extruding the surface in the shell thickness 

direction), the result is  a Type I singularity! We do this below for the model of slide 22

• stress 

diverges

• displacement 

diverges
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Geometric Singularities: 

 
Full-Order Elements

• For full-order elements, geometric singularities are not restricted to geometric points, but also extend to 

line/curve and surface boundary conditions.

• For these element types, Type I or Type II singularities occur at any and all locations where at least one 

strain displacement component is discontinuous (for elastic problems). Below is a common example of a 

Type II singularity arising from the prescribed displacement over an annular surface

• stress 

diverges

• displacement 

converges
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Geometric Singularities: Type I

 Full-Order Elements: 

The Boussinesq Solution for a Point Load over an  Elastic Half-Space

• Similar to the Poisson Equation, stress and strain near a point 

load on the surface of a full elastic continuum are governed by 

the elastic stress equilibrium equation and may be obtained 

by the construction shown at the lower right.

• We don’t need to solve for the full stress tensor to see that, by 

equilibrium over a surface element at radius r from the point 

of load application:

y

z

σr  , Fr

β

끫븜끫뢾 = 끫롨 끫뢠끫뢠끫룀끫뢠끫븪2
• In fact, this is sufficient to see that all point loads are singular points in 

a full elastic continuum (regardless of where they’re applied)!

• The full stress solution is called Boussinesq's Solution for point loads 

over elastic half-spaces, and interested readers will find many 

references (see here, for example)

끫뷶끫뺐+ 끫룚 = 0 (14)

(15)

https://en.wikipedia.org/wiki/Linear_elasticity#Elastostatics
https://en.wikipedia.org/wiki/Linear_elasticity#Solutions_for_elastostatic_cases
https://vulcanhammer.net/2022/06/01/the-quick-and-dirty-way-to-derive-boussinesqs-point-load-stress-equations/
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• We can now answer the questions raised on slide 8 for full-order elements:

1. Are point loads always singularities?

A: Yes (all locations –both convex corners and  otherwise)

2. If the answer to 1. is ‘no’, when can we expect them?

A: See above

3. Can other sorts of boundary conditions or geometry lead to this behavior?

 A: Yes. As shown on slide 43, prescribed displacements at points, curves, or 

surfaces may result in displacement field discontinuities, which may in turn 

result in geometric discontinuities

Geometric Singularities: 

 
Full-Order Elements
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• As we explained on slide 2, we refer readers to the wealth of online discussions about what can be 

done about geometric singularities when they occur. However, we will add a few observations of 

our own

• All model problems involve some idealization. Geometric singularities are certainly a result of such 

idealization. In particular, geometric features with zero surface area or length cannot be found 

either in nature, or in man-made constructions. Thus, such idealizations serve merely to 

approximate small features as a modeling convenience. So, when encountered in a model (using 

the convergence tool, for example), Nick Stevens offers the following remedies (with which we 

strongly concur):

Geometric Singularities: 

 Remedies

• Remove the singularity by replacing the sharp feature with its ‘real-world’ geometric 

detail.  Due to model size limitations, this may require submodeling (see here)

• Ignore the singularity: Either flag the location(s) as unrealistic and demonstrate 

convergence (and peak stresses) at nearby location(s), OR cap the contour bar legends at 

some known value, such as material yield (while demonstrating that only a vanishingly 

small portion of material exceeds this value)

• Use stress linearization to demonstrate that bending and membrane stresses converge 

and are acceptable (even when values near the singularity aren’t)

• Use an elastic/perfectly plastic material (assuming material yield is the limiting stress 

value) to demonstrate precisely what portion of material yields

https://medium.com/@nickjstevens/practical-tips-for-dealing-with-stress-singularities-nick-j-stevens-1fe6a57d55a9
https://simutechgroup.com/step-by-step-guide-for-2d-to-3d-submodeling/#:%7E:text=The%20process%20of%202D%2D3D,from%20the%20original%20solid%20model.
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• In addition to the remedies mentioned  on the previous slide, we’ll add another one

• The elastic Type II singularity of slide 43 is a very common one encountered in structural (elastic) 

models. Note that it results from the imposition of a displacement boundary condition whose 

geometric boundary produces a necessarily discontinuous displacement field (the source of this 

singularity) –regardless of the shape of the boundary

• Such singularities are also commonly associated with surface-to-surface contact

• In the spirit the first remedy of the previous slide, we can alleviate Type II singularities which arise 

from discontinuous displacement boundary conditions by replacing them with constraints of RBE3 

type. In Ansys, this is most easily done by replacing the displacement boundary condition with a 

remote displacement with “Deformable” behavior as shown below

Geometric Singularities: 

 Remedies
this link. And this one

https://www.mm.bme.hu/%7Egyebro/files/ans_help_v182/ans_cmd/Hlp_C_RBE3.html
https://www.mm.bme.hu/%7Egyebro/files/ans_help_v182/ans_cmd/Hlp_C_RBE3.html
https://strathprints.strath.ac.uk/51652/1/Wood_etal_NAFEMS_World_Congress_2015_Theoretical_elastic_stress_singularities_much_maligned_and_misunderstood_Jun_2015.pdf
https://cdm.ing.unimore.it/dokuwiki/_media/wikipaom2016/sinclair_i.pdf
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• When we make this change, we find that the annular (fixed) boundary now converges

• but we STILL have a Type I singularity on the loaded edge (a convergence study on surfaces containing 

that edge would diverge). A remedy for that would involve distributing the load over a finite area (by 

imprinting a small rectangular strip on the surface geometry,  for example)

Geometric Singularities: 

 Remedies
this link. And this one

• stress 

converges

• displacement 

converges

https://strathprints.strath.ac.uk/51652/1/Wood_etal_NAFEMS_World_Congress_2015_Theoretical_elastic_stress_singularities_much_maligned_and_misunderstood_Jun_2015.pdf
https://cdm.ing.unimore.it/dokuwiki/_media/wikipaom2016/sinclair_i.pdf


We Make Innovation Work
www.padtinc.com

• We define the term ‘geometric singularity’ on slide 8. Such singularities are characterized by a failure of 

mesh convergence (itself defined on slides 3 – 7) for some solution quantity of interest

• We introduce the two categories of singularity encountered in linear finite element problems: Type I (slide 

11)  and Type II (slide 19)

• Type I singularities are characterized by a failure of the primary solution variable to converge (and 

along with it, all its derivatives. See equations 7, 8, and 11 of slides 12, 13, adn 17). It was found that 

plate/shell elements are largely immune to this type of singuarity, except in the case of applied point 

moments, or clamped (moment-carrying) points. We also found that the membrane models 

(plate/shells with no bending capacity) are highly susceptible to this type of singularity (this is 

because these elements have a full-order formulation in-plane). In general,  full-order elements 

(which we define as those carrying the full stress tensor for their spatial dimensionality) are quite 

susceptible to these and they’re easier to identify than are Type II singularities

• Type II singularities are characterized by convergence of the primary variable, but divergence of its 

derivatives (see equation 12 of slide 20). Plate/shell elements are susceptible to this type of 

singularity for point loads and re-entrant corners, and we summarized the conditions which lead to it 

(slides 25 thru 28). The general requirement for producing such singularities is a nonzero Gauss 

curvature in the displaced model shape around any fixed or loaded points.

Geometric Singularities: 

 Summary
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• The results presented are further summarized on the following table

• Note that these are potential singular sites. Especially with full-order elements, whether one of these locations 

is a geomeric singularity (slide 8) will ultimately depend on other loading and boundary condition details

Geometric Singularities: 

 
Summary (Continued)

Element Type Type I Type II

Membrane • point forces (slide 15) • prescribed displacements 

(Dirichlet) on points

• re-entrant corners

Full-order • point forces

• curve and edge loads (3D) 

(slide 48)

• prescribed displacements 

(Dirichlet) on points and curves 

(3D)

• prescribed displacements 

(Dirichlet) on surfaces which 

subdivide the bounding 

surface(s) (slide 43)

• re-entrant corners

Plate/shell • point moment loads with 

clamped points

• point moment loads with all 

other bc’s (slide 33)

• point forces at non-convex and 

interior locations

• re-entrant corners
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• Type I singularities due to point and line loads in full-order element types may be explained by the 

Poisson-type relationship of the load ‘source’ term to the underlying elliptic equation as shown on slide 44

• Surface loads (tractions, t) in full-order elements must obey the following relation. This places some 

restrictions on convergent loading scenarios (but not as many as some readers may assume. Recall the 

Boussinesq solution)

Geometric Singularities: 

 Closing Thoughts

• s is the loaded surface

• n is a vector-valued function representing 

the surface normal

• Note that plate/shell elements do NOT obey this relation! In fact, the underlying differential equation for 

those element types only provide the in-plane components of the stress tensor.

• This provides a high-level explanation for why some point loads are not singular points (the solution lacks 

stress components in the thickness direction). We hope our discussion on the previous slides has provided  

more  insight.

• Re-entrant (unloaded) corners in full-order elements are potential sites of Type II singularity due to the fact 

that the displacement derivatives (strain) are not defined at such locations (but the displacements should 

still converge. Read more about this here).

• However, note that not all such sites  will be singular locations as we’ve defined them (Type I or Type II 

singularities). This determination will further depend on the geometry and other boundary conditions.

• Want more? Interested  readers  may find this link, as well as this one useful.

끫뤪 = �끫뤨 끫뺐 � 끫뤞 � 끫뢢끫뤨

https://www.comsol.com/blogs/singularities-in-finite-element-models-dealing-with-red-spots/
https://strathprints.strath.ac.uk/51652/1/Wood_etal_NAFEMS_World_Congress_2015_Theoretical_elastic_stress_singularities_much_maligned_and_misunderstood_Jun_2015.pdf
https://cdm.ing.unimore.it/dokuwiki/_media/wikipaom2016/sinclair_i.pdf
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Final Notes

• The main goal of this article is to help analysts get an intuitive understanding of what causes 

geometric singularities in finite element models and when they occur

• There is much confusion in the Engineering community over what constitutes a stress singularity

• Much of this confusion can be traced to the fact that model problems (not just finite element 

models) are idealizations of real Engineering assemblies, systems, or components. This line of 

thought suggests that the problem goes away if modeled more ‘realistically’ (by eliminating all zero-

length and zero-area features, for  example). It follows that stress singularities are fictions produced 

by simplifying assumptions

• While there is truth to this, the analyst’s choices are restricted to those that will produces solutions 

in a reasonable timeframe with the resources she has. The level of model fidelity required to 

achieve singularity-free realism is often beyond reach

• Even when it’s possible to replace all stress singularities with convergent stress fields (their more 

well-behaved cousins –stress concentrations), one often finds many of the same issues persist. In 

particular, a small region exceeds a stress allowable. Whether this small region is a point or 

convergent mesh region, the analyst is faced with the same choices listed on slide 46.

• Beyond modeling practicalities, what we’ve been calling geometric singularities tell us something 

very important about a model or design

• Regardless of how we treat them, these are locations which require special attention as they are 

likely sites of material failure if failure occurs.


	Geometric Singularities in Finite Element Problems
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

