
We Make Innovation Work
www.padtinc.com

Mapping Data in Ansys Mechanical
An Introduction to PyAnsys

Alex Grishin, PhD

PADT, Inc

2/1/2024

We Make Innovation Work
www.padtinc.com

Background

• Most Ansys users are aware of the various automation tools available –notably the Ansys

Customization Toolkit (ACT), as well as the older Ansys Parametric Design Language (APDL)

• Within the last 10 years, Ansys has been developing a new automation framework wtih a

different approach and different goals: PyAnsys

• While the older, more familiar automation frameworks are meant to be used within the

Ansys environment to automate or customize simulation functionality, PyAnsys operates

outside of the application itself.

• With this philosophy, automation occurs at the OS-level, with software connecting to either

an Ansys database or the application itself (or even several Ansys databases at once)

• Among other possibilities, this allows users to easily incorporate simulation tasks into larger

CAE processes

• In this article, we’ll focus on a less ambitious goal: We’ll see how the PyAnsys framework

may be used to automate a frequent but cumbersome task: Mapping data from one

simulation source to another

• We’ll do so by first exploring options without PyAnsys

https://www.ansys.com/training-center/course-catalog/structures/introduction-to-ansys-act-mechanical
https://www.ansys.com/blog/ansys-gets-into-open-source-with-github
https://docs.pyansys.com/version/dev/

We Make Innovation Work
www.padtinc.com

Part 1: Mapping Data:

 Using Ansys ACT and APDL

We Make Innovation Work
www.padtinc.com

• What we mean by “mapping data” from one simulation to another is the following:

• we have some physical quantity calculated or prescribed over one geometric domain (

represented by a mesh, or even just a set of points) in some environment which must be

interpolated onto another domain or mesh which shares the same space and serves as a load

or input in the second environment (we’re usually not just interpolating a result onto different

meshes. We want to calculate a new result with the source quantity interpreted as a load)

• The ‘quantity’ can be any scalar, vector, or tensor quanity (i.e. pressure, temperature, stress, etc)

• Ansys has a seemless load transfer mechanism which involves simply dragging the Solution cell

from one analysis system (the ‘source’ data to be mapped) to the Setup cell of the target analysis

system (the target model onto which the quantity is to be mapped). This results in a connection

highlighted below

The Problem Statement: Data Mapping

https://courses.ansys.com/index.php/courses/topics-in-heat-transfer-analyses/lessons/how-to-link-thermal-results-as-input-to-a-thermal-stress-simulation-lesson-4/

We Make Innovation Work
www.padtinc.com

• Although the Solution->Setup transfer mechanism will operate on meshes which are not identical,

it will only do so within a fairly strict tolerence around the source mesh

• This mechanism is ideal for transferring results between different analysis environments but

having the same mesh (as in the example on the previous slide), or for submodeling (different

mesh, but falling within the spatial domain of the source mesh), but not for interpolating data

onto meshes which may lie outside the source domain

• The example we’ll use in this article is shown below

The Problem Statement: Data Mapping

source mesh target mesh

We Make Innovation Work
www.padtinc.com

• Within the source mesh domain, there exists a simplified electronic PCB model which contains no

TTL component detail, while the target model has much more detail (which lies outside of the

source main bounding box)

The Problem Statement: Data Mapping

source PCB model target PCB model

We want to transfer a

result –like temperature

over this domain...

onto this domain...

We Make Innovation Work
www.padtinc.com

• The source model is a transient thermal study of a nosecone (containing within it a small PCB

component) subject to a convection of h=1000 W/m2 C @ 1000 C ambient temperature for 200

seconds, starting from room temperature (22 C)

• The target model consists of the detailed PCB component subject to the mapped temperatures from

the source model. The model is fixed at four solder locations with a remote (flexible) constraint

The Problem Statement: Data Mapping

source model (transient thermal) target model static structural model

(static structural)

Remote 0 displacement

(flexible: all degrees of

freedom)

Nodal body

forceTemperature

(loads)

Nodal

temperature

(resultant)

We Make Innovation Work
www.padtinc.com

• As mentioned previously, the data transfer mechanism shown on slide 3 is not appropriate for this

type of mapping (the entire target domain will not be interpolated)

• Instead, Ansys supplies users with the External Data tool for this purpose (from the Toolbox in the

Workbench Project Schematic)

The Problem Statement: Data Mapping

• The External Data tool may be used to

transfer a result in the form of ascii text

files from one system to another

• But the input text files still need to be

generated...

We Make Innovation Work
www.padtinc.com

• The External Data tool is meant to be a general purpose tool for interpolating data defined at any

collection of spatial points onto the nodes of any ansys mesh

• The data must be stored in a column-delimited text file

The Problem Statement: Data Mapping

• Browse

to file

location

• Specify what

data is stored

in each

column

• Parsed

results are

shown here

• Specify

dimensionality of

data, coordinate

system, and

delimiter type

here

We Make Innovation Work
www.padtinc.com

• But what if you want to map data for multiple load steps (time points)?

• The External Data tool requires that the user create and read the nodal (point) data for each time

point –that is: one file per load step as shown below

• This is obviously very tedious for many time steps. So, we’ll begin by showing how this process may

be automated using ACT and APDL

The Problem Statement: Data Mapping

• one file

per load

step

We Make Innovation Work
www.padtinc.com

• There are two main tasks we have to automate here. The first is the export of the data (temperature in our case.

In this example, we’ll be mapping temperatures from an ANSYS model to another ANSYS model)

• This can be done (at least) two ways

1. Using Mechanical’s Python scripting capability (part of the ACT framework)

2. Using and APDL Commands object

• We’ll start with the Python scripting approach

• We’ve provided a Python script (‘textport.py’), as well as the APDL Commands (‘writetemps.inp’) for writing out

the necessary (temperatures) which accompany this article

The Problem Statement: Data Mapping

 -Automating Data Export

writetemps.inptextport.py

We Make Innovation Work
www.padtinc.com

• Before using the ‘texport.py’ data exporting script, users should first ensure that exported data will include

nodal locations (the Mechanical default settings do not do so).

• This can be done by going to File->Options->Export and set ‘Include Node Location’ to ‘Yes’ from the Mechanical

interface

The Problem Statement: Data Mapping

 -Automating Data Export: Python Script

We Make Innovation Work
www.padtinc.com

• Users can then invoke ‘textport.py’ to export temperatures by first highlighting temperature result to be written

(the Python script identifies which result is currently highlighted) and then going to Automation->Scripting from

the top Mechanical Menu tab

• In the Mechanical Scripting editor, browse to ‘textport.py’ by selecting ‘open script’, followed by ‘Run Script’

The Problem Statement: Data Mapping

 -Automating Data Export: Python Script

We Make Innovation Work
www.padtinc.com

• Users can also create button to invoke this Python script by clicking ‘Show Button Editor’

The Problem Statement: Data Mapping

 -Automating Data Export: Python Script

• Next, click the button to

import a button script

• Finally, click to save the

button

• Once saved, users can just

click on the new button to

invoke the script

We Make Innovation Work
www.padtinc.com

• Highlight the result object you want to server as the source of the temperature data and just hit the newly

created ‘textport’ button

• The script will run through all the time steps available for the result object and export files in a format readable

by the External Data tool

• For the purpose of this tutorial, the script performs one additional operation: It moves the resulting files to the

Project’s user_files folder

The Problem Statement: Data Mapping

 -Automating Data Export: Python Script

We Make Innovation Work
www.padtinc.com

• The APDL Commands used to export temperature data for all the nodes of the model are stored in file

‘writetemps.inp’ accompanying this article

• An APDL Commands object using those commands has also been provided in the Workbench archive

accompanying this article: 2022R2_Themal.wbpz (shown below)

The Problem Statement: Data Mapping

 -Automating Data Export: APDL Commands

We Make Innovation Work
www.padtinc.com

• Before this script can be used (after download, for

example), users should make sure that the

Mechanical application is configured to write the

MAPDL db file

• This can be done by going to Analysis Settings and

setting ‘Save MAPDL db’ to ‘Yes’ under ‘Analysis Data

Management’ (this is already set in the archive

accompanying this article, but it’s good practice to

double-check)

• The Commands object should run automtically after

the model is solved (and it is unsuppressed)

• To invoke the script between solves, right-click on it

and select “Execute Post Commands”

The Problem Statement: Data Mapping

 -Automating Data Export: APDL Commands

We Make Innovation Work
www.padtinc.com

• The text file data format using the Python script is different than the one using the APDL code

simply because the default method for exporting Mechanical results to text file

(ExportToTextFile()) does not provide a delimiter option (getting around this limitation would

result in considerably more code, so we’ll omit that exercise for now)

• Instead, this function simply creates tab (^t) delimited files

• But Microsoft Excel also knows how to read tab-delimited files, and already associates the file

extension ‘xls’ with such a format (which is why we –and presumably the developers --use this

extension for exporting text files*)

• The text file data format used by the APDL script is comma-delimited (which is more convenient

in that language), but note that both file formats nevertheless use th e’xls’ file extension,

because excel recognizes both delimiters when encountering this extension

The Problem Statement: Data Mapping

 -Automating Data Export

*The xls file extension for spreadsheets is a legacy format (97-2003), and users will always recieve a

warning when opening one of these files with newer versions of Microsoft Excel

https://learn.microsoft.com/en-us/openspecs/office_file_formats/ms-xls/cd03cb5f-ca02-4934-a391-bb674cb8aa06

We Make Innovation Work
www.padtinc.com

• Once the solution data from the ‘source’ model has been created, it then needs to be read into

an External Data object

• As we mentioend on slide 9, doing this manually can be very tedious (it is not uncommon to

generate output for hundreds of solution times), so we’ve supplied users with a Workbench

Journal script for doing this automatically*

The Problem Statement: Data Mapping

 -Automating Data Transfer

*This is still an IronPython script which falls under the common ACT paradigm, but for some reason, the developers

call scripting at the Project Schematic level ‘journaling’ and have adopted a ‘wbjn’ file extension for these scripts. The

only difference between coding at this level and within a specific application (Mechanical, for example) is that you’re

in a different namespace (don’t have access to local modules like ExtAPI)

loadfiledata.wbjn

We Make Innovation Work
www.padtinc.com

• The journal file ‘loadfiledata.wbjn’ does most of the ‘heavy lifting’ of both reading in the ascii text

data to be transfered, as well a sending the necessary ACT code to the target system for

populating the downstream ‘imported load’ object in the system tree outline

• Lines 12 thru 21 contain global variables which control most of the behavior users may need

modify

• For example, line 14 defines the ‘filepath’ variable which contains the path to the source file data

(the ascii text files to be read)

The Problem Statement: Data Mapping

 -Automating Data Transfer

We Make Innovation Work
www.padtinc.com

• In addition to creating the necessary External Data object, ‘loadfiledata.wbjn’ also ‘sends’ ACT

code necessary to configure and populate the target ‘imported load’ object

• It does so using the ‘SendCommand’ method of the target model container

• This, in turn, relies on a technique of packaging the downstream code in a formatted raw string,

as demonstrated here (that blog post provided the inspirpation for this solution)

• The string in question may be found on lines 88 thru 117 (shown below)

• We’re also including a standalone python file containing this code (‘importACTscript.py’) if users

want to modify this for their own purposes

The Problem Statement: Data Mapping

 -Automating Data Transfer

importACTscript.pyloadfiledata.wbjn

https://developer.ansys.com/blog/script-tip-friday-automate-imported-loads-set-wb-scripting

We Make Innovation Work
www.padtinc.com

• Once the necessary ascii text result files have been generated (or otherwise exist), the journal file

‘loadfiledata.wbjn’ may be invoked from the Project Schematic by going to File->Scripting->Run

Script File and navigating to ‘loadfiledata.wbjn’

• Upon doing so, users will notice a new External Data object connected to the Setup cell of the

target system as shown below

The Problem Statement: Data Mapping

 -Automating Data Transfer

We Make Innovation Work
www.padtinc.com

• In addition, the target Mechanical system is opened (by line 86: setup2.Edit()), and the ACT script

shown on slide 19 is transferred to the setup cell, and the imported load object is configured and

upated....

The Problem Statement: Data Mapping

 -Automating Data Transfer

We Make Innovation Work
www.padtinc.com

• To run the model, just make sure that the Commands object (used for the PyAnsys mapping

method) is suppressed

The Problem Statement: Data Mapping

 -Automating Data Transfer

We Make Innovation Work
www.padtinc.com

• For this particular model problem, the process runs fairly quickly. The model statistics

are as follows:

• Source Data: 88707 points

• Source Times (Load Steps): 48

• Target Space: 131697 points

• The data transfer step (running file ‘loadfiledata.wbjn’) took approximately 2 ½ minutes

• But this problem does not scale well (much worse than linear) using this technique

• A common requirement is to map CFD temperature and fluid prssures onto a structural

model. Such models may contain millions of source points over hundreds of load steps.

Such a problem could easily take hours (or more) to transfer data using the techniques

shown here

• A much more efficient (and compact) method involves the newer PyAnsys tools

(discussed next). We recommend the second option (using ansys.dpf.post to map

temperatures read from text files) for that scenario

The Problem Statement: Data Mapping

 -Automating Data Transfer

We Make Innovation Work
www.padtinc.com

Part 2: Mapping Data:
 PyAnsys:

 - ansys.mapdl.reader

 - ansys.dpf.post

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader

• The PyAnsys Suite offers several tools which are capable of mapping data from one

mesh to another

• As we’ll see shortly, this is because in order to so, they all rely on a very powerful and

general mesh-manipulation utility called PyVista (which is itself a high-level Python

wrapper around the popular VTK). This utility comes with a very efficient data

mapping functionality which we’ll make use of this section

• We’ll focus first on PyMAPDL Reader

• Ansys tells us this is a ‘legacy’ reader (because it provides an older direct link to the

ansys database instead of using the newer DPF technology)

• The only reason we’re doing this is becasue the newer DPF Post will not read a

thermal result database (.rth file) –presumably, this is planned, but not yet available

while the legacy reader will do this now (see below)

https://docs.pyansys.com/version/dev/
https://docs.pyvista.org/version/stable/
https://vtk.org/
https://reader.docs.pyansys.com/version/stable/
https://docs.pyvista.org/version/stable/
https://reader.docs.pyansys.com/version/stable/

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader

• We provide a Python script called ‘tmap.py’ accompanying this article which maps the

temperature solution from the source model onto the target model mesh, and then generates

corresponding temperature loads for the target model in the form of APDL commands

• In other words: it does everything that the Workench project script ‘loadfiledata.wbjn’ does, but

in a different way.
tmap.py

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader

• Before testing this script, note that lines 27 and 29 read the source and target result files

• For this to run successfully, make sure that both models have been run (that the necessary result

files exist)

• If you haven’t already solved both models, do so before running this script.

• If you don’t want to run all 48 load steps,

you can suppress the ‘Imported Load’,

and unsupress the ‘Thermal Condition

• The only point of this step is to provide a

result file to PyAnsys

• And only the source model results matter

• from the target model, we only need the

model information (not the actual

results)

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader

• Once PyAnsys has been installed, users can easily invoke the script from the DOS window by

activating a python session as below

• Next, append the path to tmap.py and invoke it with the lines below

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader

• When executing this script from the command, line 38 will plot the mapped temepratures for load

step 48 for verification (below). The script will pause until this window is closed. Simply close it to

continue...

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader

• When finished, users should see a new subfolder called ‘load’ in the project’s user_files folder

(the same folder in which the source data files are stored)

• This folder should contain the APDL

load and time definitions (one file

for each load step)

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader

• To run the model, just unsuppress the APDL Commands object and suppress the uniform

temperature load object (used to generate a ‘dummy’ rst file)

• Suppress or delete the Imported Load object (if it exists from a prior study) and solve

• You can verify the temperatures with the user-defined (BFE) result object supplied with the model

which plots nodal temperatures from body-forces (with the APDL BFE command)

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader. How does it work?

• Running Python scripts in this way is efficient (quick)

• However, when writing, editing, or testing these scripts, it is very helpful to use a modern smart

editor. At PADT, we like Spyder

• Open ‘tmap.py’ in the editor. At this point, you can ‘run’, ‘debug’, or simply cut-and-paste lines

into the console to test what they do.

• open files

• run files

• debug files

https://www.spyder-ide.org/

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader. How does it work?

• Cut-and-paste lines 1 thru 29 into the console (this loads the source and target databases into the

session).

• Note that this requires that both source and target have already been solved (because we need a

result file)

• This is why we’ve provided the target model with a dummy body load (suppress this before

running the mapped solution)

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader. How does it work?

• ssol and tsol are the Python interfaces to the source and target models objects respecively

• Spyder provides code-completion tooltips when you type an object followd by ‘dot(.)’ and hit the

‘tab’ key

• Thus, we can see what variables and methods are available in the ssol and tsol objects using the

tooltips (below)

• You can scroll

through the tooltips

to select the one you

want

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader. How does it work?

• The next three lines access the PyVista Unstructured Grid object of the source model. They loop

through the stored load steps (n_results), make a string identifier (tstr) of each, and then store the

corresponding nodal temperature in an array name with that identifier

• Since we use the PyVista grid functionality to interpolate the results, the first step is to fill the

PyVista grid with the source solution

• To understand this a little better, pause for a momont to explore the grid obect

• Make a new object called sgrid by typing ‘sgrid = ssol.grid.copy() <enter>’

• Type ‘print(sgrid) <enter>’

https://docs.pyvista.org/version/stable/examples/00-load/create-unstructured-surface.html#creating-an-unstructured-grid

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader. How does it work?

• Type ‘type(sgrid)<enter>’

• So, we know that ‘sgrid’ is a PyVista Unstructured Grid object

containing 95334 ‘Cells’ (elements), and 88707 ‘Points’ (nodes)

• We also know that it already has 28 arrays arrays stored within it

• To see what these array are, type ‘sgrid.array_names<enter>’

• The Points are indexed from 0 to 88706 while the elements are

indexed from 0 to 95333

• The stored arrays are indexed accordingly

• Notice that the first array is called ‘ansys_node_num’. This array

returns the ansys node id corresponding to the Point index

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader. How does it work?

• View the mesh by typing ‘sgrid.plot(show_edges=True)<enter>’

• We’re getting a contour plot, which is simply plotting the values in the first stored array (because we

didn’t specify), which happens to be the Ansys node number

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader. How does it work?

• To understand more about what you can do in PyVista, simply type your query in this link

https://docs.pyvista.org/version/stable/
https://docs.pyvista.org/version/stable/

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader. How does it work?

• Let’s continue exploring ‘tmap.py’

• Cut-and-paste the next three lines into the console (followed by <enter>)

• These lines copy the ‘nodal_temperature’ result (which is a tuple of node numbers and nodal

temperature values for load step i) into arrays labeled ‘TN’, where N is the load step number

(starting from 0)

• Thus, the N temperature results are now also stored in the PyVista grid object. We’ll see why this

is necessary in a moment.

• Type ‘ssol.grid.array_names<enter>’ to see the new arrays we’ve created...

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader. How does it work?

• Review one of the temperature results (let’s say, the 13th one), by typing the following

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader. How does it work?
• Now cut-and-paste the next two lines into the console.

• This is the heart the script. Line 37 interpolates the source grid arrays (which we’ve been

reviewing. All of them) onto the target grid object

• To learn more about how this function works, see here.

• Most important. Note how long this took (a few seconds at worst). This is why this is PADT’s

recommended method of interpolating Ansys data (or external data onto Ansys meshes)

• And line 38 (see slide 29)

plots the last

interpolated time step

for us for verification

• The only thing you may

have to modify on other

models is this parameter

(‘radius=1.e-3’)

• it defines an interpolation

radius, which should be

roughly equal to the target

mesh element size

https://docs.pyvista.org/version/stable/examples/01-filter/interpolate.html

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.mapdl.reader. How does it work?
• Lines 41 and 42 check to see if the ‘load’ subdirectory (under ‘user_files’) exists. If it doesn’t,

create it. We’re going to generate thermal loads in the form of APDL commands, and we want

those to reside in their own folder

• Lines 45 thru 60 generate the APDL commands in the form of text files with the node,

temperature, and time data we need to run the analysis

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

• Below is a diagram of how it all works

• It’s important to understand (and remember) that PyAnsys runs outside of Ansys and either

connects directly with a database (in the case of MAPDL reader), or establishes a DPF connection

with one (as in the case of DPF Post –discussed next)

dp0\SYS-2\MECH

WB Project

.py files,

python project folder

ds.dat,

file.rth

dp0\SYS\MECH

ds.dat,

file.rst

Source System

Model (from

which data is

to be mapped)

Target System

Model (on

which to map

data)

We Make Innovation Work
www.padtinc.com

• In the previous example, we showed users how to map temperature data from a thermal anlaysis

system onto a structural model (to be applied as a thermo-elastic load) using a direct connection

(MAPDL reader)

• But as we mentioned earler, suppose the temperatures to be mapped come from outside of

Ansys?

• PyAnsys is also ideal for such cases, and we supply yet another Python script, called ‘tmap2.py’ to

accomplish this

Data Mapping with PyAnsys

 -ansys.dpf.post

tmap2.py

https://post.docs.pyansys.com/version/stable/

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.dpf.post
• Of course, ‘tmap2.py’ can be run from a python shell as before(see slide 28)

• This code is very similar to that of ‘tmap.py’ (utilizing the same interpolation method), but this

time, it uses DPF Post to get the target database and generates it’s own PyVista source object

• Open a new Spyder session and open file ‘tmap2.py’

• In this example,

we’re using the

comma-delimited

files generated by

the APDL scripts

(slides 15 – 17)

• To change that, just

uncomment line 22

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.dpf.post
• We see the first major differences between this code and ‘tmap.py’ in lines 28 – 42.

• Notice also that the source path (spath) now points to the user_files folder. This code requires

that folder be populated with temperature data as described in the first half of this article

• Line 28 gets the node data one time (so that it doesn’t have to keep reading that for every time step

• Line 29 generates a PyVista PolyData object out of the source nodes (instead of a full mesh)

https://docs.pyvista.org/version/stable/examples/00-load/create-poly.html#create-polydata

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.dpf.post
• Cut-and-past lines 14 thru 42 as below

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.dpf.post
• Now, in the console, type ‘spts.plot(scalars=‘T0’,cmap=‘rainbow’)<enter>’ to plot the first load

step

• This is the temperature data

(just the point data) at the

first load step

• Note that the point data is

all we really need for nodal

interpolation (we don’t

need an entire mesh)

We Make Innovation Work
www.padtinc.com

Data Mapping with PyAnsys

 -ansys.dpf.post

• Lines 45 – 52 are similar to what we’ve seen before, except that the dpf post interface differs from

that of the MAPDL Reader slightly

• for documentation on this interface, see here

• Users may continue cutting and pasting if desired

• One big difference between DPF Post and MAPDL reader is that lines 45 and 46 establish a DPF

connection to the target rst

• If we want to run this analysis again, we’ll have to break the DPF connection, or else the existing

rst file will be locked (preventing the creation of a new one!)

• Lines 86 and 87 have been added to do this
• The same

interpolation

function is

being used

https://post.docs.pyansys.com/version/stable/api/ansys.dpf.post.html#subpackages

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys

Option 1
Only PyAnsys, Python, and the

Spyder IDE

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• This article was written the week of 1/22/2024

• At that time, the latest PyAnsys installation targeted Ansys 2024 R1, and for some reason, this build

broke some functionality that should have worked with earlier releases (specifically with DPF Post).

What this means is that it’s probably not safe to just install PyAnsys without regard to version as shown

here (‘pip install pyansys’)

• We’ll have to assume that this will happen from time to time, and so what follows is a ‘best practice’ for

installing PyAnsys on a Windows desktop –by targeting specific versions of PyAnsys

• First, make sure to install a supported Python version (supports all versions between 3.9 and 3.11

inclusive as of this writing)

https://pypi.org/project/pyansys/
https://pypi.org/project/pyansys/

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• In this example, we’ll install Python 3.11 (64-bit)

• This is easiest with the installer (shown below)

https://www.python.org/downloads/release/python-3117/

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• Once downloaded, double-click on the installer to run it with ordinary user priveleges (executing it ‘As

Adminstrator’ won’t bring any advantages, and in fact it may be safer to execute it without those

privileges)

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• If you have no other versions of Python installed (or if this is to be the ‘main’ one used), check both

boxes below and hit ‘Install Now’

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• Open a DOS Window (by typing ’cmd’ in Start Menu search Window)

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• Make a Virtual Environment for this PyAnsys installation (targeted at Ansys2023R2) by entering the

following (followed by <enter>):

 python –m venv pyansys2023R2

• By default, Python will place the virtual environment in the current directory location (in this

case, your ‘home’ drive as shown below). You can change this by supplying a path as shown

here

• To learn more about wha ta virtual

environement is and why we’re doing this,

see here

https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/
https://www.freecodecamp.org/news/how-to-setup-virtual-environments-in-python/
https://docs.python.org/3/library/venv.html

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• Now, activate this environment to begin installing PyAnsys by typing and entering:

 pyansys2023R2\Scripts\activate

• Install PyAnsys for your version of Ansys as shown here by typing:

 pip install pyansys==2023.2.0

• For future installs, you can obtain a list of available PyAnsys versions by typing:

 pip index versions pyansys

https://docs.pyansys.com/version/dev/getting_started.html#installing_a_specific_version

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• Follow the suggestion provided by pip at the end of the install:

• Now, with this installation of PyAnsys, test it out with at least a few examples from the PyAnsys website.

https://docs.pyansys.com/version/dev/getting_started.html

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• In particular, make sure to test modules that you know you will use in a Python shell as below

• Testing this base installation in January of 2024 on the example found here results in the following.

• That seems to work...

https://post.docs.pyansys.com/version/stable/

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• But the MAPDL Reader seems to be broken when we try the installation on this example (this is why

you should test everything you know you’re going to use)

• This happened in January 2024, but may not happen in future releases. If it does happen, the broken

modules and depencies must be repaired (future users may skip the following if nothing’s broken)

• If the above error does occur, exit Python and type and enter the following:

pip install --upgrade pyvista

pip install --upgrade ansys-dpf-core

pip install --upgrade ansys-mapdl-core

https://reader.docs.pyansys.com/version/stable/

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• Certainly not what we want to see, but so far, we haven’t noticed anything still broken

• Proceed to install the IDE

• After we make the three ‘upgrades’, we get the following message:

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• We’re going to install the Spyder IDE (editor). We recommend doing this outside of any virtual

environment and NOT using pip (we’re going to download the installer). But before we do that, we’ll

use pip within the pyansys environment to supply Spyder with the dependencies it will need to run in

that environment (by the way: you’ll need to do this with all virtual environments you create in the

future)

• Type:

 pip install spyder-kernels==2.5.*

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• Navigate to the Spyder downloads page , scroll to the bottom, and hit the ‘Download For Windows’

button (or click the link below)

https://www.spyder-ide.org/#Download
https://github.com/spyder-ide/spyder/releases/latest/download/Spyder_64bit_full.exe
https://www.spyder-ide.org/

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• Double-click on the ‘Spyder_64bit_full.exe’ installer

• Accept all defaults as they pop up (except for this one)...
• If you’re not installing on a system server

(just for your own use on your

workstation), select ‘Install just for me’

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• Open Spyder by clicking ‘Finish’ (when finished) with the ‘Start Spyder’ option checked as below

• Spyder installs with its own version of Python

pre-installed

• This will NOT be what you want

• Go to Tools->PYTHONPATH manager

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• In the PYTHONPATH manager, click on the ‘+’ button on the right to ‘Add path’

• Browse to add the base Python installation path as shown here

• Pro Tip: To discover where your base installation path is,

there is a much better way than that shown in the link above

• Just open a command prompt (you don’t want to be in the

virtual environment. Deactivate it if you are), and type

‘python’ to launch a python shell session

• Then type ‘import sys’ followed by ‘print(sys.executable)’

• The path PYTHONPATH is looking for is the parent of this

executable (the ‘Python311’ folder)

https://puneetpanwar.com/use-existing-packages-spyder5/

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• from the Spyder top menu, go to Tools->Preference->Python interpeter and browse to select the

python executable path in the virtual environment Scripts folder (this time including the executable

itself. You can use the same pro tip as before to find the path, but this time from within the

pyansys2023R2 virtual environement)

• To summarize: In the previous step, we told Spyder where the base installation is so it can use that

instead of its own Python installation. In this step, we’re telling Spyder to use the Python executable in

our PyAnsys virtual environment instead of the base installation. This is Spyder’s way of supporting

virtual environments

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• To try the new settings, close the Spyder app and relaunch it from the start menu

• Now, try a simple DPF Post example in the console window to test the installation (for example, the one

on slide 62

https://post.docs.pyansys.com/version/stable/

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• This time, the example from slide 63 (MAPDL Reader) seems to work

https://reader.docs.pyansys.com/version/stable/examples/01-cyclic_results/academic_sector_nd.html#sphx-glr-examples-01-cyclic-results-academic-sector-nd-py

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 1

• This seems like a lot of work, but it’s worth it if everything works.

• Future releases may fix things. If so, then users can omit the steps taken on slide 63 (the ‘upgrade’ of

PyVista, DPF Core, and MAPDL Reader), but we recommend all the other steps taken here to ensure a

robust functioning installation of PyAnsys

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys

Option 2
Anaconda

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 2

• Download Anaconda from this website

• Now, run the Anaconda installer. If you have Adminstrator privileges, run it ‘As Administrator’* (by-

right-clcking on it. In that case, you will also want to open all subsequent Anaconda Prompts As

Adminstrator). If not, simply double-click to run it.

• If you’re installing it ‘As Administrator’, click on ‘All Users’ in the next dialog box

• If not, select ‘Just Me’

• Accept all other defaults

• Once again, accept all default

options and keep hitting ‘next’

* We recommend NOT installing ‘As

Administrator’ if you can avoid it

https://www.anaconda.com/download

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 2

• When the installer finishes, you’ll be prompted to ‘update’. Click ‘Yes’ (followed by ‘Update Now’)

• you will be repeatedly asked if you

want to ‘sign in’ or otherwise register

for Anaconda’s cloud services

• This is up to you, but not strictly

necessary for using Anaconda

• When finished, you will be prompted to

launch navigator. Do so

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 2

• After Anaconda has installed and updated, go to your Wndows Start Menu and select the ‘Anaconda

Prompt’

• Type ‘python’ into the prompt window...

• So, in January 2024, it looks like Anaconda is

providing us with Python 3.11.5 as the Python

version

• This is fine for our current purposes (we may have

to amend this for future users)

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 2

• Notice the ‘(base)’ next to the prompt

• this tells us that we are in the ‘base’ environment

• Unlike a ‘raw’ or independent installation of Python, in which one navigates environments with the base

installation Python, Anaconda works with its own external environment and package-management

systen (conda)

• Windows does not know where the Python executable is (that location will depend on whether you

installed with adminstrator privileges or not). Anaconda manages its own Python ecosystem.

• To see where the base installation is, once again type and enter ‘import sys’ followed by

‘print(sys.executable)’

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 2

• Ok. Time to install PyAnsys

• Everything will proceed almost exactly as before, except this time we’ll create the pyansys2023R2

environment with Conda (Anaconda’s package manager)

• This can be done two ways

1. Graphically, with the Navigator

2. In the Anaconda Prompt shell

• We’ll do it with Navigator (which should already be open. See slide 75)

• If not, launch it from the Start Menu...

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 2

• Create the environment by clicking on ‘Environments’ in the left tool bar and also click on the ‘base

(root)’ environment in the middle menu group

• When you do, all the packages that you install are shown at teh right (there are over 500!)

• Hit the ‘+Create’

button at the

bottom of the

middle screen

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 2

• Fill in the ‘Create new environment’ dialog box as shown below

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 2

• Once we do this, notice that there are now only 15 packages available in our newly created environment

(that’s about to change)

• These correspond to ‘core’ packages that Anaconda deems essential for any environment

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 2

• We’ll continue using the Anaconda Prompt. Launch the Anaconda Prompt

(close the earlier one if it is still open and launch a new one)

• Type ‘conda activate pyansys2023R2 <enter>’

• Now type ‘pip install pyansys==2023.2.0 <enter>’ as on slide 59

• From there, follow the same directions as found on slides 59 – 64

• But change the spyder-kernels version to 2.4.* (this release of Anaconda

uses an earlier releae of Spyder). So change the line on slide 64 to:

 pip install spyder-kernels==2.4.*

• In particular, don’t forget to perform the examples check we did on slides

61,62. And if nothing is broken, you don’t have to perform the upgrades on

slide 62. But as of this writing, users should see the same Error as shown on

slide 62, and so the same remedy as shown there must applied here

• Note that conda has its own package installer (conda), which works with

syntax similar to pip and should normally be used to install packages

• However, not all Python packages support conda. PyAnsys is one of these,

and so pip must be used in those cases

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 2

• Launch spyder, but this time do it with the Spyder launch icon that we have in the Start

Menu (this is another advantage to using Anaconda)

• The next step is to set the Python solver to use the PyAnsys environement we’ve created.

This is under Tools->Preferences as on slide 69 (we don’t have to set the PYTHONPATH in

Anaconda, so we can skip the instructions on slide 68)

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 2

• Once the Python Interpreter has been set to the PyAnsys environment, close Spyder

• Relaunch Spyder to ensure the change have taken effect.

• You’ll know you’re successful when you see the following in your console window

• Python

version is

now 3.11.7

• Hovering cursor over this field

at the bottom confirms that

the PyAnssy environment is

bing used

We Make Innovation Work
www.padtinc.com

Appendix
Installing PyAnsys: Option 2

• Test the install with the PyAnsys with the examples on slide 62 and slide 63

https://post.docs.pyansys.com/version/stable/
https://reader.docs.pyansys.com/version/stable/

	Mapping Data in Ansys Mechanical �An Introduction to PyAnsys
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86

