
DX R13: 02/17/2011

 1

Writing and Compiling a Custom

Material Property in ANSYS

Mechanical APDL

Eric Miller

Co-Owner

Principal, Simulation and

Business Technologies

09/27/2012

PADT, Inc.

DX R13: 02/17/2011

 2

Agenda

• Note: This presentation is being

recorded

• Introductions

• Background and Requirements

• Compiling & Linking

• The User Material routines

• Simple Example

• Thoughts

DX R13: 02/17/2011

 3

Introductions

DX R13: 02/17/2011

 4

Upcoming Webinars

• Upcoming Webinars

– October 11, 2012

12:00 - 1:00 MST

An Example of Moving Mesh Modeling of a Valve

– October 25, 2012

12:00 - 1:00 MST

Getting Started with ANSYS Engineering Knowledge Manager

(EKM)

– November/December: Start the ANSYS 14.5 Webinars?

• See upcoming and past webinars at:

– padtincevents.webex.com

• Click on ANSYS Webinar Series

DX R13: 02/17/2011

 5

About PADT

• We Make Innovation Work

• PADT is an Engineering Services

Company

– Mechanical Engineering

– 18 Years of Growth and Happy customers

– 70’ish Employees

• 3 Business Areas

– CAE Sales & Services

• Consulting, Training, Sales, Support

– Product Development

– Rapid Prototyping & Manufacturing

• Learn More: www.PADTINC.com

We Make Innovation Work

DX R13: 02/17/2011

 6

Cube HVPC Systems

• Balance between speed and cost

– Mini-Cluster

96 Cores / 512 GB RAM / 6 TB Disk

Mobile Rack / UPS / Monitor / Keyboard

$34,900

– Compute Server

32 Cores / 256 GB RAM / 3 TB Disk

$14,250

– Simulation Workstation (Intel)

12 Cores / 96 GB RAM / 3 TB Disk

$11,750

– Simulation Workstation (AMD)

12 Cores / 64 GB RAM / 3 TB Disk

$6,300

• www.CUBE-HVPC.com

DX R13: 02/17/2011

 7

 PeDAL – The APDL Editor
• Side-by-side editor and help viewer layout.

• Instant help on any documented APDL command by pressing F1.

• Full syntax highlighting for ANSYS v12 Mechanical APDL.

• Auto-complete drop downs for APDL Commands.

• APDL Command argument hints while typing commands.

• Search ANSYS help phrases and keywords.

• Multiple tabs for the editor and html viewer.

• Full capability web browser built in allows for rich web experience and web

searches.

DX R13: 02/17/2011

 8

Connect with PADT

Facebook:

facebook.com/padtinc

Twitter:

#padtinc

LinkedIn:

Search on PADT, Inc.

Email Subscriptions:
www.padtinc.com/epubs

Web:

www.PADTINC.com

ANSYS User Blog:

padtinc.com/focus

DX R13: 02/17/2011

 9

Background and

Requirements

DX R13: 02/17/2011

 10

ANSYS Mechanical APDL = OPEN

• MAPDL is the most open FEA commercial program on the planet

– Designed and built that way in the 90’s

• Several ways to access:

– APDL Macros – command based programming language

– APDL Math – Access to the matrices in MAPDL

– User routines – write and link user routines

• Including utilities needed for routines

– FORTRAN API

• No longer fully documented

• You either compile a custom executable or you use external commands

– We will do custom executable today

– External commands link dynamic libraries at run time

• Used for user commands and such

DX R13: 02/17/2011

 11

User Routines

• Can be C or FORTRAN

– But we recommend only FORTRAN

– Provided user subroutines are all FORTRAN

• Referred to as User Programmable Features, or UPF’s

• Different types:

– Database access

– User calculated loading

– Modify or monitor existing ANSYS elements

– Create a new element

– Specify your own material behavior

– Set up ANSYS to run as a subroutine in another program

• We are covering materials today, but most is applicable to all the other

uses

• Note: Some routines won’t work correctly with Parallel

– Verify parallel on test cases.

DX R13: 02/17/2011

 12

What you Need to Know

• FOTRAN

– If you don’t know FOTRAN, you can figure it out, but it will be a lot of

debugging.

• Find a grey haired person to help you.

• How the ANSYS solver works

– The theory guide is a good place to start

– For the area you are using, you need to know what equations ANSYS

uses and how it applies them.

– Things like substeps, loadsteps, PREP7 vs POST1 vs SOLU, solver

types, etc…

• The math behind the thing you want to model

– Know this math inside and out because you probably will have to

morph it to fit within how the solver needs it specified.

DX R13: 02/17/2011

 13

What you Need

• A full load of ANSYS MAPDL on your machine:

– C:\Program Files\ANSYS Inc\v140\ansys\customize\user

– /ansys_inc/v140/ansys/customize/user/

– Should have full include and user directories

• Read and Write access to the vNNN directory and all sub

folders

• The Programmer’s Manual

– Mechanical APDL

>Programmer’s Manual

• And…

DX R13: 02/17/2011

 14

The Most Important Thing You Will

Learn Today……..

DX R13: 02/17/2011

 15

YOU MUST USE THE RIGHT COMPILER

• The number one problem we see with user routines is people using the

wrong compiler!!!!!

– It says it everywhere in the help, and still, it is a problem.

– No maybe, no it kind of works. You must get the right one – Visual studio and

compilers

• // Installation and Licensing Documentation // Windows Installation

Guide // 2. Platform Details :: 0

– Bottom of the page:

• // Installation and Licensing Documentation // Linux Installation Guide //

2. Platform Details

– Table 2.1

• It sometimes says “or newer”

– Nope, you need the one listed

Compiler Requirements for Windows Systems

All ANSYS, Inc. products are built and tested using the Visual Studio 2008 SP1 (including the MS C++ compiler) and

Intel FORTRAN 11.1 compilers.

DX R13: 02/17/2011

 16

Intel Compiler

• ANSYS has been using the Intel compiler for some time

• Start at the Intel website:

– http://software.intel.com/en-us/intel-compilers

• You may have to contact them to make sure you get the right

version

– Be very careful on this, ANSYS usually uses an older version

because it is more stable and QA’d

http://software.intel.com/en-us/intel-compilers
http://software.intel.com/en-us/intel-compilers
http://software.intel.com/en-us/intel-compilers
http://software.intel.com/en-us/intel-compilers
http://software.intel.com/en-us/intel-compilers
http://software.intel.com/en-us/intel-compilers

DX R13: 02/17/2011

 17

But First!

• Do you really need a UPF?

– Dig a little deeper into the material models and make sure you can’t

use what is already there

• Will your material model work in ANSYS

– Does it use the proper formulation and approach

– Does it fit within the element and solve architecture

DX R13: 02/17/2011

 18

Some Advice

• Before you get deep into your model get the system working

– Compiler, ANSYS, environment variables, etc…

• Take the standard usermat.f routine and get it to compile and

link.

– It has the basic TB, BISO model built in as a demo.

• Test it

– I like to build two beams and run one with a standard BISO and

another with the use routine

• Get everything working.

• Then make a small difference to the calculations and make

sure you can see it

• Keep the test routine

– If something stops working, you can go back and verify where you

are.

DX R13: 02/17/2011

 19

Compiling and

Linking Your

Routine

DX R13: 02/17/2011

 20

Windows vs Linux, USERMAT vs Other

• You can do all of this on both platforms

– We will cover Windows because it is the most common

– Linux is very similar, just need to do things slightly different in syntax

and such

• Same goes for other UPF’s

– Method used for USERMAT works for most other routines

• Documentation can be used to see the differences

• Also: we will talk about USERMAT, it works for creep,

hyperelasticity and all other user material UPF’s.

DX R13: 02/17/2011

 21

Two Ways: Custom Executable and Dynamic
• Old Way: Custom Executable

– Use a supplied script to compile and link a custom ansys.exe

– Accessed at run time by command line or launcher options

– Pros:

• Easy to deploy to other machines

• You know you have a working executable

• No special setup required, just the options when your run

– Cons:

• Takes longer to compile, a pain during debug loops

• Big file to move around

• Newer Way: Dynamic

– Use supplied script or APDL command to link at runtime

– Can reside anywhere on the solver machine

– Accessed through environment variable and/or an APDL command

– Pros:

• Quick compile time, great for debugging

• You can have multiple versions of your routines, pick at run time

• Using APDL command, you can actually compile at solve time

– Cons:

• Less control. DLL’s all over the place

• Setup for users can be confusing, Environment variables and paths and such

• If using compile at run, if the compile fails you don’t get real good feedback

DX R13: 02/17/2011

 22

Using DLL’s at Run Time

• Decide on a working directory (workdir) and get your

usermat.f routine in that directory

– Don’t change the name!

• Copy ansusershared.bat to workdir from:
C:\Program Files\ANSYS Inc\v140\ansys\custom\user\winx64

• Open up the FORTRAN command line

window

• CD to workdir

• Run ansusershared.bat

– Enter the name of the routine you want compiled

– Enter a blank return to get out of the script

• To use the DLL you made:

– Set the environment variable:

ANS_USER_PATH=workdir

DX R13: 02/17/2011

 23

Using DLL’s at Run Time

• Recommended method

• Use different directories for each version of routines and

change environment variable to access what you want

• Robust, you either have a DLL or you don’t

DX R13: 02/17/2011

 24

Using /UPF

• First, set up some environment variable letting the program

know you are going to use /UPF

– Make sure that your ANSYS executable directory is in your PATH

• It needs to run a script called findUPF.bat

– Set ANS_USE_UPF=TRUE

• From your working directory, launch the FORTRAN

command line

• Add /upf,usermat.f to your input command file

• Run ansys in batch mode from the command line shell

• A DLL will be made, reuse it just like when you make the

DLL

DX R13: 02/17/2011

 25

Using /UPF

• I’m not a fan of this method

– Have to run ANSYS from the FORTRAN shell

• If you set up paths so any routine can compile/link you can run without

shell

– Need compiler on machine you are solving on

– If your compile fails you are kind of screwed

– Added because ABAQUS allows for compile at run

• Only works with batch mode

DX R13: 02/17/2011

 26

Making a Custom ansys.exe

• Open up the FORTAN command line shell

• You can do this in the custom\user\winx64 directory or in

your own directory

– I prefer your own. If so, copy:

anscust.bat, ansys.lrf, ansysex.def from custom\user\winx64 to your

directory

• Copy your routine to the workdir

• CD to the workdir

• Run anscust.bat

– It looks for any UPF’s and if it finds them, compiles them

– You will get an ansys.exe

• To use it, specify the path in the launcher

(customization/preferences) or with the –custom <path>

switch

DX R13: 02/17/2011

 27

Making a Custom ansys.exe

• Takes a while to compile but when it is done, it works.

• No need for environment variables.

• Note: Do not rename the executable, must be ansys.exe

– Use directories to have different versions

DX R13: 02/17/2011

 28

Compiling Recommendations

• Debug using the DLL

• If it is just you, keep using the DLL

• If you deploy to others, when everything is working, make a

new ansys.exe and deploy that

• Remember to do everything from the FORTRAN shell

DX R13: 02/17/2011

 29

The User Material

Routines

DX R13: 02/17/2011

 30

The Basics

• Standard FORTRAN, nothing fancy

• Well documented

• Comes with the TB, BISO model

• Contains several subroutines

– Usermat

• Doesn’t do much, just figures out dimension of element and calls proper

routine:

– Usermat1d: 1D truss

– Usermat3d: 3D elements

– Usermatbm: beam elements

– Usermatps: plain strain

• Works on current element technology only

– Does not work with legacy elements

DX R13: 02/17/2011

 31

The Basics

• The routine gets called for every integration point in your model that is

assigned the material number that is defined by a TB, User

• Stress, Strain, state variables, time increment, strain increment are

passed in

• Your routine updates values and passes them back

• Read documentation on math

– // Programmer's Manual // II. Guide to User-Programmable Features // 2.

UPF Subroutines and Functions // 2.4. Subroutines for Customizing Material

Behavior

• Lots of helper routines provided to make your job easier

– General routines you will need

– Vector utilities

– Matrix utilities

– // Programmer's Manual // II. Guide to User-Programmable Features // 4.

Subroutines for Users' Convenience

DX R13: 02/17/2011

 32

Call

• Standard call, all the info

that gets passed to the

routine is listed

DX R13: 02/17/2011

 33

Input Arguments

• Documented in the

comments

DX R13: 02/17/2011

 34

Input/Output

• These go in and out, so be careful.

• Note the VARn is not used right now

• State variables: Important

– These for your use to pass things back and forth

– How you supply values that you can change

• As opposed to properties that don’t change

• Unique to each integration point

– Also how you store any specific “result” or “intermediate” values at

each integration point that you want to plot or list

– Very powerful

– See TB info at end of this section

DX R13: 02/17/2011

 35

Output

• Stuff that is passed out

DX R13: 02/17/2011

 36

Important details

• Ncomp: Number of

terms for each type

of element

• Vector orders

• Matrix order

DX R13: 02/17/2011

 37

Rest of Routine

• Declares types

• Then has and If-then-else to call

the proper subroutine for the

dimension of the element

– Just pass everything through

– They do this so that the logic of the

program is not full of if-then-else

statements.

• Header info repeats for each

subroutine

DX R13: 02/17/2011

 38

USERMAT3D

• This is where you would do your own thing

• Simple example for biso is here

– Get values

– Calc elastic and plastic slopes

– Our first helper function: vmove (copies vectors)

DX R13: 02/17/2011

 39

USERMAT3D

• This is where you would do your own thing

• Simple example for biso is here

– Get values

– Calc elastic and plastic slopes

– Our first helper function: vmove (copies vectors)

DX R13: 02/17/2011

 40

USERMAT3D

• Calculate the elastic stiffness matrix

DX R13: 02/17/2011

 41

Stop

• At this point, if the inputs and outputs sound confusing you

need to back up and understand ANSYS non-linear solving

and how their elements work

– Theory manual

– Hughes, Thomas J.R. and James Winget. “Finite Rotation Effects in

Numerical Integration of Rate Constitutive Equations Arising in Large-

Deformation Analysis.” [International Journal for Numerical Methods

in Engineering]. 15.9 (1980): 1413-1418.

• Book that was used by ANSYS

DX R13: 02/17/2011

 42

USERMAT3D

• Calculate the stresses

• Note use of get_ElmData

to get elmement call

– Documented as part of

usermat documentation

– Used to get info that is not

passed in

• Get yield…

DX R13: 02/17/2011

 43

USERMAT3D

• Next section checks for

yield

– If no, use a goto (yes, a

goto!) to skip plastic stuff

• Do plastic calcs

DX R13: 02/17/2011

 44

USERMAT3D

• Clean up and get out

– Note the 500-600 elastic portion

• Thoughts

– Simple calcs, yours will probably

be much more complex

• But steps are the same

• Gather your properties

• Branch if needed to for different

equations

• Figure out strain/stress

• Return the info

– Didn’t use a lot of calls to other

routines

– Remember it gets called for

every integration point

• You need to be efficient

DX R13: 02/17/2011

 45

USERMAT

• Restrictions

– Current-technology elements only

– If you want to plot state variables, you need to use /graph, full

– Not enough hooks in/out for incompressible materials

• Special routine (UserHyper) for that

• Only one usermat per model

– There is a way around this, use one of your material properties as a

flag to access different models

– Check the flag then call a subroutine for the proper material

DX R13: 02/17/2011

 46

TB

• TB, User, Mat, NTEMPS, NPTS

– Mat is material number

– NTEMPS is number of temperature points you will provide properties

at

– NPTS, number of property values
tb,user,1,2,4

tbtemp,1.0

tbdata,1,19e5, 0.3, 1e3,100

tbtemp,2.0

tbdata,1,21e5, 0.3, 2e3,100

• TB, State, Mat,,NPTS

– Specifies the material and number of state variables you will use

– NPTS max is 1000, yes, 1000

– Plot/list with ETABLE, ESOL

DX R13: 02/17/2011

 47

Simple Example

DX R13: 02/17/2011

 48

Modified Slightly from the Help

• Two elements, pull on them

• One is TB,BISO, the other TB,USER

• Files will be on The Focus Blog tomorrow

• Modified usermat.f

– Scale yield by 0.75

DX R13: 02/17/2011

 49

Using the User Mat

• Mat2 is the user mat

• Same properties, just a different table

DX R13: 02/17/2011

 50

1: Modify usermat.f

• Make sure ANS_USER_PATH is pointing to my user

directory

• Copy to my working directory

• Edit and in usermat3d subroutine change sigy0 line to:

– sigy0 = prop(3)*.75

• Save file

• Launch FORTRAN command line shell

• ansusershared.bat

• Run ANSYS with demo input file as input

• Check output: BISO and USER stresses and strains are

different

DX R13: 02/17/2011

 51

Results

• Note that it tells us we are using a user mat

DX R13: 02/17/2011

 52

Lets try it live…

DX R13: 02/17/2011

 53

Thoughts

DX R13: 02/17/2011

 54

Parallel

• Things get tricky with parallel

• You can get it to work

• Compare parallel and non-parallel on all hardware options

– Make sure they match

• For shared memory parallel:

• All UPF ‘s are supported in parallel

• But don’t use Common Block variables.

– Each core may have a different value.

– You don’t want to set them different on each core

– You can usually read them if they are not something that is changed

by a solve

– But don’t write to them

DX R13: 02/17/2011

 55

Convert UPF into ANSYS

• ANSYS does convert customer/university supplied material

UPF’s into the solver

• A few things needed:

– More than just one user out there wants it, need to show need

– You have published test results/and or theoretical papers to verify

your accuracy

– The model is free of all legal claims

– You have time to work with ANSYS development to work out any

issues and help with testing

• Contact your support provider

– If they can’t help, contact me.

DX R13: 02/17/2011

 56

Hints

• Use state variable to set flag for first time used, write

something to output that says “HEY, I’m BEING USED!”

– Maybe even give more info on the routine

– Use iout= wrinqr(2) to get output unit

• User erhandler() to send out notes, warnings, errors

– Could use it rather than write above

• User /UNDO to write a *.db file at ansy point

• Crawl, Walk, Run

DX R13: 02/17/2011

 57

Thank You…

• PADT Enjoys doing these webinars…

• Please consider us as your partner

• ANSYS Related

– Training, Mentoring

– Consulting Services

– Customization

– Sales (if in AZ, NM, CO, UT, NV)

• Stratasys 3D Printers and Systems

• CUBE HVPC Systems

• Product Development

– High-end engineering with practical, real world application

• Rapid Prototyping

– SLA, SLS, FDM, PolyJet, CNC, Soft Tooling,

Injection Molding

• Help us by letting us Help you

