Tech Tips and Videos for ANSYS Mechanical and CFD

ansys_free_techtipsA few weeks ago we added some great free resources to our website for existing and potential users of ANSYS Structural and CFD tools.  It includes some great videos from ANSYS, Inc. on a variety of topics as well as productivity kits. It dawned on us that many of you are faithful readers of The Focus but don’t often check out our ANSYS product web pages. So, we are including the material here for your viewing pleasure.

(7/9/2015: We just added the Electromechanical kit here.)

For structural users, we have a link to “The Structural Simulation Productivity Kit ” here. The kit includes:

  • Analyzing Vibration with Acoustic–Structural Coupling Article
  • Contact Enhancements in ANSYS Mechanical and MAPDL 15.0 Webinar
  • ANSYS Helps KTM Develop a 21st Century Super Sports Car Case Study
  • A Practical Discussion on Fatigue White Paper
  • Designing Solid Composites Article

We also have a collection of videos from ANSYS, Inc that we found useful:

For CFD users, we have a link to “The CFD Simulation Productivity Kit ” here. The kit includes:

  • Simulating Erosion Using ANSYS Computational Fluid Dynamics Presentation,
  • Cutting Design Costs: How Industry leaders benefit from Fast and Reliable CFD  White Paper,
  • Introduction to Multiphase Models in ANSYS CFD Three Part Webinar,
  • Advances in Core CFD Technology: Meeting Your Evolving Product Development Needs White Paper,
  • Turbulence Modeling for Engineering Flows Application Brief.

We also have a collection of videos from ANSYS, Inc that we found useful:

Interested in learning more, contact us or simply request a quote.

Press Release: Structural Optimization from VR&D Added to PADT Portfolio

varand-gtam-w-logosWe are very pleased to announce that we have added another great partner to our product portfolio: Vanderplaats Research  Development.  VR&D is a leading provider of structural optimization tools for simulation, and a strong partner with ANSYS.  We came across their Genesis and GTAM products when we were looking for a good topological optimization tool for one of our ANSYS customers. We quickly found it to be a great compliment, especially for the growing need to support optimization for parts made with 3D Printing.

Please find the official press release below or as a PDF file.  You can also learn more about the products on our website here. We hope to schedule some webinars on this tool, and publish some blog articles, in the coming months. 

As always, feel free to contact us for more information.  

Press Release:

PADT is now a reseller of the GTAM and GENESIS optimization tools from Vanderplaats R&D, offering leading structural geometry and topological optimization tools to enable simulation for components made with 3D Printing

Tempe, AZ – March 24, 2015 – Phoenix Analysis & Design Technologies, Inc. (PADT, Inc.), the Southwest’s largest provider of simulation, product development, and 3D Printing services and products, is pleased to announce that an agreement has been reached with Vanderplaats Research & Development, Inc. (VR&D) for PADT to become a distributor of VR&D’s industry leading structural optimization tools in the Southwestern United States. These powerful tools will be offered alongside ANSYS Mechanical as a way for PADT’s customers to use topological optimization and shape optimization to determine the best geometry for their products.

The GENESIS program is a Finite Element solver written by leaders in the optimization space. It offers sizing, shape, topography, topometry, freeform, and topology optimization algorithms.  No other tool delivers so many methods for users to determine the ideal configuration for their mechanical components. These methods can be used in conjunction with static, modal, random vibration, heat transfer, and buckling simulations.  More information on GENESIS can be found at http://www.vrand.com/Genesis.html

vrand-Design-Studio-for-GENESIS

PADT recommends that ANSYS Mechanical users who require topological optimization access GENESIS through the GENESIS Topology for ANSYS Mechanical tool, or GTAM. This extension runs inside ANSYS Mechanical, allowing users the ability to use their ANSYS models and the ANSYS user interface while still accessing the power of GENESIS.  The extension allows the user to setup the topology optimization problem, optimize, post-processing, export optimized geometry all within ANSYS Mechanical user interface.

vrand-gtam-exmpl-1 vrand-gtam-exmpl-2

“We had a customer ask us to find a topological optimization solution for optimizing the shape of a part they were manufacturing with 3D Printing. We tried GTAM and immediately found it to be the type of technically superior tool we like to represent” commented Ward Rand, a co-owner of PADT.  “It didn’t take our engineers long to learn it and after receiving great support from VR&D, we knew this was a tool we should add to our portfolio.”

Besides reselling the tool, PADT is adopting both GENESIS and GTAM as their internal tools for shape optimization in support of their growing consulting in the area of design and simulation for Additive Manufacturing, popularly known as 3D Printing. PADT combines these with ANSYS SpaceClaim and Geomagic Studio to design and optimize components that will be created using 3D Printing.

“We are thrilled to partner with PADT because of their deep knowledge in simulation, additive manufacturing, and 3D printing and for their extraordinary ability to help their clients”, stated Juan Pablo Leiva, President and COO of VR&D, “We feel that their unique talents are crucial in supporting clients in today’s demanding and changing market.”

To learn more about the GENESIS and GTAM products, visit http://www.padtinc.com/vrand or contact our technical sales team at 480.813.4884 or sales@padtinc.com.

vrand-GTAM-GUI vrand-race-car-composites vrand-pedal

About Phoenix Analysis and Design Technologies
Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering service company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and Rapid Prototyping products and services. PADT’s worldwide reputation for technical excellence and an experienced staff is based on its proven record of building long term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.“  With over 75 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, its Littleton, Colorado office, Albuquerque, New Mexico office, and Murray, Utah office, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

About Vanderplaats Research & Development
Since its founding in 1984, Vanderplaats Research & Development, Inc. (VR&D) has advocated for the advancement of numerical optimization in industry. The company is a premier software company, developing and marketing a number of design optimization tools, providing professional services and training, and engaging in ongoing advanced research. VR&D products include GENESIS, GTAM, VisualDOC, Design Studio, SMS, DOT, and BIGDOT. For more information on VR&D, please visit:  www.vrand.com.

ANSYS 16.0 License Manager – New Look and Feel, New Capabilities

ansys-license-manager-160-tnIf your role includes administering ANSYS licenses, you should be aware that the look and feel of the ANSYS license manager has changed somewhat at version 16.0.  The tasks that used to all be performed within the Server ANSLIC_ADMIN Utility have now been split pretty much between that tool and a new tool that runs within your browser called the ANSYS License Management Center.

The ANSYS License Management Center looks like this:

ansys-license-manager-160-f1

This new License Management Center window is opened on Windows via Start > All Programs > ANSYS, Inc. License Manager > ANSYS License Management Center, and on Linux via /ansys_inc/shared_files/licensing/start_lmcenter.

This utility is where you now install license files, start and start the license manager, and also gather diagnostic information if something goes wrong.  You can also view the license .log files here as well as ANSYS licensing documentation.

The ‘old’ Server ANSLIC_ADMIN Utility is now smaller and does less than it did in prior versions.  This is what it looks like at version 16.0:

ansys-license-manager-160-f2

This window is still useful in that you can click on View Status/Diagnostic Options to get information you can’t get in the new License Management Center, primarily Display the License Status to see what licenses are in use and are available.  This information is also available to clients via the Client ANSLIC_ADMIN Utility.  You can start the ANSYS License Management Center from here too.

One capability you won’t find in either utility is the ability to Reread the License Manager settings.  When you load a new license file, the License Management Center now automatically stops and starts the license manager so you shouldn’t have to do a reread after installing a new file, but just in case, it can still be done via the command line using these instructions:

On Windows, open a command prompt and move to:

C:\Program Files\ANSYS Inc\Shared Files\Licensing\winx64

Then issue the command:

ansysli_server –k reread

The same command works on Linux from the /ansys_inc/shared_files/licensing/linx64 directory.

Another important change is the location of the license files after they have been installed.  The new location is (on Windows):

C:\Program Files\Ansys Inc\Shared Files\Licensing\license_files

This means there is a new sub-folder named license_files that contains the license file(s).  File(s) is now plural since you can have both an ANSYS license file and an Ansoft license file in that folder, both running using the ANSYS License Management Center.  There is a new license file naming convention as well:

ANSYS License file name:  ansyslmd.lic

ANSOFT License file name:  ansoftd.lic

The path on Linux is:

 /ansys_inc/shared_files/licensing/license_files

When you install an ANSOFT license file, the license manager now does some edits to change the daemon to the ANSYS daemon in addition to renaming the file and placing it in the new location. 

One additional piece of information:  The license manager reads any .lic files that are located in the license_files folder, so it’s probably a good idea to ensure that only ‘good’ versions of ansyslmd.lic and ansoftd.lic reside in that folder. 

A major conclusion that can be drawn from all of this is that ANSYS license manager and Ansoft license manager license files can now be managed using a single licensing tool and single set of licensing software.  We’ve been waiting for this for some time and it’s nice to see it’s here and working successfully.

 

Video Tips: Trace Import Extension for Analyzing PCBs in ANSYS Mechanical

As we know trying to resolve the traces, vias and copper pads on a PCB in an FEA tool is practically unfeasible. 

This video will show the Trace Import Extension, which will fill in the gap between having to perform lumped-material analyses and having to try and resolve/mesh all the tiny features….and it does so in a pretty neat way.

Node & Element Selection in ANSYS Mechanical: Some Good News and Some Bad News (fixed)… And Some More Good News

ansys-mechanical-selection-f1First, some good news… 

In Workbench R14.5, ANSYS introduced nodal Named Selections, and in R15.0, they have added the ability to create Named Selections of elements. So now you can make groups of nodes or elements just like you can in MAPDL.  You can use these name selections for result plots to show just specific portion of the results. ansys-mechanical-selection-f2

In R15.0, you can right-click on a Name Selection in the tree and hit, “Create Nodal Name Selection”. This creates a Name Selection of all the nodes associated with the particular piece of geometry in the original Named Selection, whether that is a body, surface, edge, or vertex. Highlighting the nodal named selection in the tree will then take you to the Worksheet where you can add rows for limiting the selection of nodes to a location value or some other criteria.

ansys-mechanical-selection-f3

This is also where you can add a row to “Convert” the “Mesh Node” entity type to “Mesh Element”. The Mesh Element entity type has a criterion choice for how the elements are selected from the nodes.  

ansys-mechanical-selection-f4

“Any Node” will select all the elements that have any of their nodes in the list of nodes that make up the current named selection.  “All Nodes” will select only those elements that have all of their nodes in the current set. Many of you may already know this, and it is a great new feature, but there is a catch, and that brings us to the telling of the “Bad News”.

The Bad News…

After noticing the generation time of the name selection drastically increase when using the “All Nodes” criteria, I ran a small test case. With just a cube meshed to two different refinement levels, I tracked the generation time for the element name selection using the two different criterion. Here is what I found.

ansys-mechanical-selection-f5

I am not even going to speculate what is different with the “All Nodes” node-checking algorithm, but an increase in element count by a factor of eight caused more than a 13300% increase in generation time. But look at the generation time for the “Any Node” criteria. It stayed right on par for the different mesh sizes.

So, back to the Good News, and the Really Good News…

The Good News is that you can avoid the long generation times, in R15.0, by not using the “All Nodes” criteria. The Really Good news is that when I ran the same test in R16.0, I got 6.0 Sec for the “Any Node” criteria, and 6.3 Seconds for the “All Nodes” criteria. So ANSYS has already fixed the problem in R16.0, which just gives you another reason to upgrade. If you are going to continue using R15.0, then just stay away from the “All Nodes” criteria for the element named Selections. It is much better to use the location based filtering to cut down your nodal selection so that you can use the “Any Node” criteria.  

ansys-mechanical-selection-f6

Job Opening at PADT: ANSYS Account Manager

PADT_Logo_Color_100x50PADT is looking for proactive and technical sales professionals interested in joining our team to represent ANSYS software products.  There are multiple openings with opportunities in Southern California, the Phoenix Arizona metro area, Denver Colorado, Salt Lake City Utah, and Albuquerque New Mexico.  Selling ANSYS with PADT is hard but rewarding work where you get to interface with smart and capable customers and work with one of the most respected ANSYS resellers in the world.  Learn more on our career page or simply send your resume to jobs@padtinc.com.

padt-jobs-footer-pics

Put 3D Simulation Results into 3D PDF with VCollab

VCollab_Shaded_Logo_FinalPDF has become a great, versatile format for sharing electronic documents. But engineers doing simulation were stuck with only being able to include 2D images in their PDF files. With the release of a new Plugin for VCollab Professional, you can include 3D model and result plots right in your PDF files.  A great way to archive, a great way to share.

You can see the results by checking out these two examples:

Here is a small example of a car front: vcollab-3dPDF-example-carfront

And here is the full car: vcollab-3dPDF-example-car

You can read the full press release here.

  vcollab-3dpdf-airplane1    

PADT uses VCollab to convert our CAD geometry and simulation results in to smaller, portable formats that can be imbedded in to PowerPoint, Word, websites, portals, PLM/PDM systems, etc…  It is a great way to view complicated data without having to fire up the full simulation tool.  And the files are much smaller than a full result file, so it also is a great way to get key results off of a remote server and interact with them quickly and efficiently.

Now with 3D PDF support the end user doesn't even have to have a Microsoft Office product or be on the web, they can just view it in their Adobe Acrobat reader.  If you are interested in trying out VCollab to make 3D PDF content or for any other application, contact us at sales@padtinc.com or call 1.800.293.PADT or 480.813.4884. We can arrange for a demonstration over the web, provide you with a trial copy, and work out the best configuration for your needs. 

Using Bright CM to Manage a Linux Cluster

COD_Cluster-Bright-1What goes into managing a Linux HPC (High Performance Computing) cluster?

There is an endless list of software, tools and configurations that are required or recommended for efficiently managing a shared HPC cluster environment.

A shared HPC cluster typically has many layers that deliver a usable environment that doesn’t have to  depend on the users coordinating closely or the system administrators being superheroes of late-night patching and just-in-time recovery.

bright-f1

Figure 1 Typical Layers of a shared HPC cluster.

For each layer in the diagram above there are numerous open-source and paid software tools to choose from. The thing to note is that it’s not just a choice. System administrators have to work with the user requirements, compatibility tweaks and ease of implementation and use to come up with a perfect recipe (much like carrot cake). Once the choices have been made, users and system administrators have to train, learn and start utilizing these tools.

HPC @ PADT Inc.

At PADT Inc. we have several Linux based HPC clusters that are in high demand. Our Clusters are based on the Cube High Value Performance Computing (HVPC) systems and are designed to optimize the performance of numerical simulation software. We were facing several challenges that are common with building & maintaining HPC clusters. The challenges were mainly in the areas of security, imaging and deployment, resource management, monitoring and maintenance.

To solve these challenges there is an endless list of software tools and packages both open-source and commercial. Each one of these tools comes with its own steep learning curve and mounting time to test & implement.

Enter – Bright Computing

After testing several tools we came across the Bright Computing – Bright Cluster Manager (Bright CM). Bright CM eliminates the need for system administrators to manually install and configure the most common HPC cluster components. On top of that it provides the majority of the HPC software packages, tools and software libraries in their default software image.

A Bright CM cluster installation starts off with an extremely useful installation wizard that asks all of the right questions while giving the user full control to customize the installation. With a note pad, a couple of hours and a basic understanding of HPC clusters, you are ready to install your applications.

bright-f2

Figure 2. Installation Wizard

An all knowing dashboard helps system admins master and monitor the cluster(s) or if you prefer the CLI CM shell provides full functionality through command line. From the dashboard system admins can manage multiple clusters down to the finest details.

bright-f3

Figure 3. Cluster Management Interface.

An extensive cluster monitoring interface allows systems admins, users and key stakeholders to generate and view detailed reports about the different cluster components.

bright-f4

Figure 4. Cluster Monitoring Interface.

Bright CM has proven to be a valuable tool in managing and optimizing our HPC environment. For further information and a demo of Bright Cluster Manager please contact sales@padtinc.com.

10 Useful New Features in ANSYS Mechanical 16.0

ansys-mechanical-16-heade2r

PADT is excited about the plethora of new features in release 16.0 of ANSYS products.  After sorting through the list of new features in Mechanical, here are 10 enhancements that we found to be particularly useful for general applications.


1: Mesh Display Style

This new option in the details view for the mesh branch makes it easy to visualize mesh quality items such as aspect ratio, skewness, element quality, etc.  The default style is body color, but it can be changed in the details to element quality, for example, as shown here:

ansys-mechanical-16-f1a

Figure 1. A. – Mesh Display Style Set to Element Quality

figure1b

Figure 1. B. – Element Quality Plot After Additional Mesh Settings

ansys-mechanical-16-f1c

Figure 1. C. – Accessing Display Style in the Mesh Details


2: Image to Clipboard

How many times have you either done a print screen > paste into editing tool > crop or done an image to file to get the plots you need into tools such as Word and PowerPoint?  The new Image to Clipboard menu pick streamlines this process.  Now, just get the image the way you want it in the geometry view, right click, and select Image to Clipboard.  Or just use Ctrl + C.  When you paste, you’ll be pasting the contents of that view window directly.  Here’s what it looks like:

ansys-mechanical-16-f2

Figure 2 – Right Click, Image to Clip Board


3: Beam Contact Formulation

This was a beta feature at 15.0, but if you didn’t get a chance to try it out, it’s now fully supported at 16.0.  The idea here is that instead of the ‘traditional’ bonded contact methods (using the augmented Lagrange or pure penalty formulation) or the Multi-Point Constraint (MPC) bonded option, we now have a new choice of beam contact.  This option utilizes internally-created massless linear beam elements to connect the two sides of a contact interface together.  This can be more efficient than the traditional formulations and can avoid the over constraints that can happen if multiple contact regions utilizing the MPC option end up generating constraint equations that tend to conflict with each other.

ansys-mechanical-16-f3

Figure 3 – Beam Formulation for Bonded Contact


4: Nonlinear Adaptive Region

If you have ever been frustrated by the error message in the Solution Information window that says, “Element xyz … has become highly distorted…”, version 16.0 adds a new tool to our toolbox with the Nonlinear Adaptive Region capability.  This capability is in its infancy stage at 16.0, but in the right circumstances it allows the solution to recover from highly distorted elements by pausing, remeshing, and then continuing.  We plan on publishing more details on this capability soon, but for now please know that it exists and more can learned in the 16.0 Mechanical Help.  There are a lot of restrictions on when it can work, but a big one is that it only works for elements that become overly deformed due to large and nonuniform deformation, meaning not due to unstable materials, numerical instabilities, or structures that are unstable due to buckling effects.

As shown in figure 4. A., a Nonlinear Adaptive Region can be inserted under the Solution branch.  It is scoped to bodies.  Options and controls are set in the details view.

ansys-mechanical-16-f4a

Figure 4. A. – Nonlinear Adaptive Region

If the solver encounters a ‘qualifying event’ that triggers a remesh, the solver output will inform us like this:

 

**** REGENERATE MESH AT SUBSTEP     5 OF LOAD STEP      1 BECAUSE OF
      NONLINEAR ADAPTIVE CRITERIA

 

 

 

 

AmsMesher(ANSYS Mechanical Solver Mesher),Graph based ANSYS Meshing EXtension,v0.96.03b
(c)ANSYS,Inc. v160-20141009
  Platform           :  Windows 7 6.1.7601
  Arguments          :  F:\Program Files\ANSYS Inc\v160\ANSYS\bin\winx64\AnsMechSolverMesh.exe
                     :  -m
                     :  G:\Testing\16.0\_ProjectScratch\Scr692\file_inpRzn_0001.cdb
                     :  –slayers=2
                     :  –silent=0
                     :  –aconcave=15.0000
                     :  –aconvex=15.0000
                     :  –gszratio=1.0000
  Seed elements      :  _RZNDISTEL block

– 17:6:17 2015-2-11

  ===================================================================
  == Mesh quality metrics comparison                                
  ===================================================================
  Element Average    :  ——–Source——–+——–Target——–
  ..Skewness(Volume) :    4.0450e-001             4.1063e-001        
  ..Aspect Ratio     :    2.3411e+000             2.4331e+000        
  Domain Volume      :    8.6109e-003             8.6345e-003        

  Worst Element      :  ——–Source——–+——–Target——–
  ..Skewness(Volume) :    0.8564  (e552     )      0.7487  (e2217    )   
  ..Aspect Ratio     :    4.9731  (e434     )      6.8070  (e2236    )   

  ===================================================================
  == Remeshing result statistics                                    
  ===================================================================
  Domain(s)          :   1      
  Region(s)          :   1      
  Patche(s)          :   7      
  nNode[New]         :   39      
  nElem[New/Eff/Src] :   79 / 92 / 2076      

  Peak memory        :   10 MB

– 17:6:17 2015-2-11
– AmsMesher run completed in 0.225 seconds

  ========================= End Run =================================
  ===================================================================

 **** NEW MESH HAS BEEN CREATED SUCCESSFULLY. CONTINUE TO SOLVE. 

Results item tabular listings will show that a remesh has occurred, as shown in figure 4. B.

ansys-mechanical-16-f4b

Figure 4. B. – Results Table Indicating a Remesh Occurred in the Nonlinear Adaptive Region

ansys-mechanical-16-f4c

Figure 4. C. – Before and After Remesh Due to Nonlinear Adaptive Region


5: Thermal Fluid Flow via Thermal ‘Pipes’

This has also been a beta option in prior releases, but nicely, at 16.0 it becomes a production feature.  The idea here is that we can use the ANSYS Mechanical APDL FLUID116 elements in Mechanical, without needing a command object.  These fluid elements have temperature as their degree of freedom in this case, and enable the effects of one dimensional fluid flow.  This means we have a reduced order model for capturing heat transfer due to a fluid moving through some kind of cavity without having to explicitly model that cavity.  The pipe ‘path’ is specified using a line body.

The line body gets defined with a cross section in CAD, and is tagged as a named selection in Mechanical.  This thermal pipe can then interact on appropriate surfaces in your model via a convection load.  Once the convection load is applied on appropriate surfaces in your model, the Fluid Flow option can then be set to Yes, and the line body is specified as the appropriate named selection.  Appropriate BC’s need to be applied to the line body, such as temperature constraints and mass flow rate, as shown in figure 5.

ansys-mechanical-16-f5

Figure 5 – Thermal “Pipe” Line Body at Top, Showing Applied Boundary Conditions


6: Solver Pivot Checking Control

This new option under Analysis Settings > Solver Controls allows you to potentially continue an analysis that has stopped due to pivoting issues, meaning a model that’s not fully constrained or one that is having trouble due to contact pairs not being fully in contact. 

The options are Program Controlled, Warning, Error, and Off.  The Warning setting is the one to use if you want the solver to continue after any pivoting issues have occurred.  The Error setting means that the solver will stop if pivoting issues occur.  The Off setting results in no pivot checking to occur, while Program Controlled, which is the default, means that the solver will decide.

ansys-mechanical-16-f6

Figure 6 – Solver Pivot Checking Controls Under Analysis Settings


7: Contact Result Trackers

This new feature allows you to more closely track contact status data while the solution is running, or after it has completed.  This capability uses the .cnd file that is created during the solution in the solver directory.  It is useful because it gives you more information on the behavior of your contact regions during solution so you can have more confidence that things are progressing well or potentially stop the solution and take corrective action if they are not.  The tracker objects get inserted under the Solution Information branch, as shown in figure 7. A.

ansys-mechanical-16-f7a

Figure 7. A. – Contact Trackers Inserted Under Solution Information

A large variety of quantities can be selected to track, such as Number Contacting, Number Sticking, Gap, Penetration, etc.

ansys-mechanical-16-f7b

Figure 7. B. – Contact Results Tracker Settings in the Details View

Contact results tracker quantities can be viewed in real time during the solution, as shown in figure 7. C.

ansys-mechanical-16-f7c

Figure 7. C. – Contact Results Tracker Showing Gap Decreasing as the Solution Progresses


8: Tree Filtering

For large assemblies or other complex models, there are useful enhancements in how the tree can be filtered, including the ability to create Groups.  Groups can consist of tree entities that are geometry, coordinate systems, connection features, boundary conditions, or even results.  Grouping is accomplished as easily as selecting the desired items in the tree, then right clicking to specify Group, as shown in Figure 8. A.

ansys-mechanical-16-f8a

Figure 8. A. – Grouping Displacements

A new folder in the tree is then created which can be named something useful.  Figure 8. B. shows the displacement boundary condition group (folder) after it was given a name.

ansys-mechanical-16-f8b

Figure 8. B. – Group of Displacement BC’s, Given a Meaningful Name

It’s easy to right click and Ungroup if needed, and there is also a Group Similar Objects option which allows you to select just one item in the tree and easily group all similar items by right clicking.


9: Results Set Listing Enhancements

In addition to the information on remeshing that we mentioned back in useful new feature number 4, there is a new capability to right click in the tabular listing of results and then right click to create total deformation or equivalent stress results.  This capability can make it faster to create a deformation or stress plot for a particular time point or result set of interest.

The procedure to do this is:

  • Left click on the Solution branch in the tree.
  • Left click on the desired Results set in Tabular Data
  • Right click on that results set and select Create Total Deformation Results or Create Equivalent Stress Results, as shown in figure 9.

The result of these steps will be a new result item in the tree, waiting for you to evaluate so you can see the new results plot.

ansys-mechanical-16-f9

Figure 9 – Right Click in Solution Tabular Data to Create Deformation or Equivalent Stress Result Items


10: Explode View

We’ve saved a fun one for last, the new Explode View capability.  This allows you to incrementally ‘explode’ the view of your assemblies, making it potentially easier to visualize the parts and interaction between parts that make up the assembly.  To use this feature, make sure the Explode View Options toolbar is turned on in your View settings.  There are several options for the ‘explosion center’, such as the assembly center or the global or a user defined coordinate system.

ansys-mechanical-16-f10a 

Figure 10. A. – The Explode View Options Toolbar

As you can see in figure 10. A., there is a slider that allows you to control the ‘level’ of view explosion.  Keep in mind this is just a visual tool and does nothing to the coordinates of the parts in your assemblies.

Figures 10. B. and 10. C. show various slider settings for the exploded view of an assembly.

ansys-mechanical-16-f10b

Figure 10. B. – Explode View Level 3

ansys-mechanical-16-f10c

Figure 10. C. – Explode View Level 4


This concludes our tour of 10 useful new features in ANSYS Mechanical 16.0.  We hope you find this information helps you get your ANSYS Mechanical simulations completed more efficiently.  There are lots and lots of other new features that we didn’t mention here.  The Release Notes in the Help covers a lot of them.  We’ll be writing more about some of the things we mentioned here as well as some of the other new features soon.  

PADT’s ANSYS Sales Team Celebrates Sales Record for 2014

2014 was both a challenging and rewarding year at PADT. One area of the company that achieved success last year was the ANSYS Sales team.  Lead by Bob Calvin, our account  managers Oren Raz and Patrick Barnett worked with the support of our technical team  throughout the year to help our customers find the right solution for their simulation needs. All that hard work resulted in a record year of sales for ANSYS products by PADT.

A big "Thank You" needs to go out to all of our fantastic customers who make selling and supporting this tool such a pleasure. Our success is a direct result of the success that they are having in the application of ANSYS, Inc. technology to improve their products and their product development process. I know that sounds kind of "salesy" but it is true.  We keep selling more of this stuff for one simple reason, it works. 

And making it work is also the job of our technical support team, our engineers who serve as application engineers, and the business support staff that takes care of the details. 

 This week we were lucky to have Bob Thibeault, the new ANSYS Director North America Channel, and Clark Cox, the ANSYS Channel Account Manager, visit Phoenix and we were able to get a picture with them as we placed our 6th annual sales achievement medal on our "wall o' awards."

PADT-2014-ANSYS-Sales-Achievement-Award
2014 Accomplished – Putting the medal on the wall
(L to R) Clark Cox, Bob Thibeault, Ward Rand, Eric Miller, Bob Calvin

Things are already off to a great start for 2015 and we hope to be working with even more customers as we help them explore new and profitable ways to apply this technology. 

Quick Tip: Concatenating Text Files Using ANSYS Mechanical APDL

So you have text output from some ANSYS analysis and you wish you could just do this:

cat lift.txt  cop.txt drag.txt >> results.txt

and you are writing an ANSYS macro and want it to run on all platforms.  The following macro will use APDL commands to join the files together. 

macro1.mac

/inquire,linesin1,lines,lift,txt

*sread,str1array,lift,txt,,80,,linesin1

/inquire,linesin2,lines,cop,txt

*sread,str2array,cop,txt,,80,,linesin2

/inquire,linesin3,lines,drag,txt

*sread,str3array,drag,txt,,80,,linesin3

*cfopen,results,txt

*vlen,linesin1

*vwrite,str1array(1)

%80S

*vlen,linesin2

*vwrite,str2array(1)

%80S

*vlen,linesin3

*vwrite,str3array(1)

%80S

*cfclose

Bonus: If you want to strip some lines off of the top or read less than all the lines, you can pass additional arguments to *sread:

/inquire,linesin1,lines,lift,txt

Lines_skip=5

Lines_read=linesin1-lines_skip

*sread,str1array,lift,txt,,80,lines_skip,lines_read

 

Seminar Info: Designing and Simulating Products for 3D Printing

Note: We have scheduled an encore Lunch & Learn and companion Webinar for March 23, 2015.  Please register here to attend in person at CEI in Phoenix or here to attend via the web.

ds43dp-1People are interested in how to better do design and simulation for products they manufacture using 3D Printing.  When the AZ Tech council let us know they had a cancelation for their monthly manufacturing Lunch and Learn, we figured why not do something on this topic, a few people might show up. We had over 105 people register, so we had to close registration. In the end around 95 total people made it to the seminar, which is more than expected so we had to add chairs. Who would have thought that many people would come for such a nerdy topic?.

For an hour and fifteen minutes they sat and listned to us talk about the ins and outs of using this growing technology to make end use parts.  Here is a copy of the PowerPoint as a PDF.

We did add one bullet item in the design suggestions area based on a question. Someone pointed out that the machine instructions, what the AM machine uses to make the parts, should be a controlled document. They are exactly right and that is a very important process that needs to be put in place to get traceability and repeatability.  

Here are some useful links:

As always, do not hesitate to contact us for more information or with any questions.

If you missed this presentation, don't worry, we are looking to schedule a live/web version of this talk with some enhancements sometime in March.  Watch the usual channels for time, place, and registration information. We will also be publishing detailed blog posts on many of the topics covered today, diving deeper into areas of interest.

Thank you to the AZ Tech Council, ASU SkySong, and everyone that attended for making this our best attended non-web seminar ever.

Design and Simulation for 3D Printing Full House

The Full Power of SpaceClaim Engineer – Now Available from PADT

SpaceClaim-1We have been using SpaceClaim with ANSYS Workbench for about four years now, and we always liked it. Then it came as part of the Geomagic Spark tool and we got more excited.  This was a powerful geometry creation, editing, and reapir tool that was saving us time all across PADT.  The, when ANSYS, Inc. purchased the company SpaceClaim we got realy excited.  So excited that we decided to become a reseller of the full product, and not just the ANSYS or Geomagic tools.  The addition of a module for working with STL files sealed the deal and as of the begining of the year we are offering all flavors of SpaceClaim to our customers.

The official press release can be found here. You can learn a lot about the product by visiting the web page.

To get started learning about why we love this program so much, check out this video showing the new features in the latest version:

Then go visit their YouTube channel and watch videos that may be of special interest to you.

Or, contact us here at PADT and we would be happy to share with your our enthusiasm for this tool.

SpaceClaim-Model1b

 

Deflategate Update: ANSYS Simulation Shows it Really Does not Make a Difference.

There is still more debate going on about the deflated footballs that the New England Patriots used in their playoff game. "Who Deflated Them? When? Were they acting on orders?"  But no one is asking if it makes a real difference.

Enter ANSYS simulation software. Using the newest ANSYS product, ANSYS AIM, the engineers at ANSYS, Inc. were able to simulate the effect of lower pressure on grip. It turns out that the the difference in pressure only made a 5mm difference in grip. No big deal.  

Being a Multiphysics tool they were able to quickly also run a flow analysis and see what impact drag from "wobble" had on a pass.  A 10% off axis wobble resulted in 20% more drag, that is a few yards on a long pass.  Their conclusion, throwing a tight spiral is more important than the pressure of the ball.

Check out the full article on the ANSYS blog: 

http://www.ansys-blog.com/superbowl-deflategate-scandal-debunked-using-engineering-simulation/#more-11576

Here is the video as well:

Donny Don’t – Remote Objects

Nothing like a good ‘ol fashion Simpson’s reference.  I’m trying to start a new series of articles that address common mistakes and things to avoid, and what better reference than when Bart ‘joined’ the Junior Campers and found out he might get a knife out of the deal. 

6lrWlDO

For this first article, let’s talk about remote objects (force, displacement, points, joints).  First, remote objects are awesome.  Want to add a rotational DOF to your solid-object model?  Remote Displacement.  Want to apply a load and don’t want to worry about force/moment balance?  Remote Force.  Want to apply a load but also constrain a surface?  Remote Point.  Take two points and define a open/locked degrees of freedom and you have a kinematic joint.

The thing to watch out for is how you define these remote points.  ANSYS Mechanical does an amazing job at making a pretty tedious process easy (create pilot node, create constraint-type contact, specify DOFs to include, specify formulation).  In Mechanical, all you need to do is highlight some geometry, right mouse click, and insert the appropriate object (remote point, remote force, etc).  No need to keep track of real constant sets, element tshape’s…easy.  Almost too easy if you ask me.

Once you start creating multiple remote objects, you may see the following:

message1

If you dig into the solver output file you may see this:

image

The complaint is that we have multiple overlapping constraint sets.  Let’s take a step back and see the model I’ve setup:

image

I have a cylinder, attached to a body-to-ground spring on one face, a translational joint applied on the OD, and a remote force and moment applied on the opposite end.  If I follow the instructions shown from the ANSYS Workbench message about graphically displaying FE Connections (select the ‘Solution Information’ item, click the graphics tab):

image

We can see that any type of constraint equation is shown in red.  The issue here is that the nodes on the OD edge on the top and bottom of my cylinder belong to multiple constraint equation sets.  On the bottom my my cylinder those nodes are being constrained to the spring end AND the cylindrical joint.  On the top the nodes on the edge are being constrained to the joint AND remote force.  When you hit solve, ANSYS needs to figure out how to resolve the conflicting constraint sets (a node cannot be a slave term for two different constraint sets).  I don’t know exactly how the solver manages this, but I like to imagine it’s like two people fighting over who gets to keep a dog…and they place the dog in-between them and call for it, and whoever the dog goes to gets to keep it. 

Now for this example, the solver is capable of handling the over-constraint because overall…the model is properly constrained.  The spring can loose some of the edge nodes and still properly connect to the cylinder.  Same goes for the other remote objects (translation joint and remote force/moment).  If we had more objects defined and more overlaps, that’s a different story.  You can introduce a pretty lengthy lag, or outright solver failure, if there are a lot of overconstraint terms in the model. 

So now the question becomes, how do I fix this.  The easiest way is to not fix this and ignore the warning.  If our part behaves properly, we get the reaction forces we’d expect, then odds are the overconstraint terms that are automatically corrected are fine.  If we actually wanted to remove that warning, we would need to make sure we scope remote objects that do not touch other remote objects.  We can do this by going into DesignModeler or SpaceClaim and imprinting the surfaces. 

image

In DM, I just extruded the edges with the operation set to imprint face.  In SpaceClaim you would just need to use the ‘copy edge’ option on the pull command:

image

Now this will modify the topology and will ensure we have a separation of nodes for all of our remote objects:

image

When we solve…no warning message about MPC conflicts:

image

And when we look at the FE connectivity, there are no nodes shared by multiple remote objects:

image 

The last thing I’d like to point out is the application of a force and moment on a remote point:

image

Whenever you have two remote objects operating on the same surface (e.g. a moment and force, force and displacement, etc), you should really be using a remote point.  If I were to create two remote objects:

image

I now come right back to my original problem of conflicting constraints.  These two objects share the exact same nodal set but are creating two independent remote points.  If you want to do this, right-mouse-click on one of your remote objects and select ‘promote to remote point’:

image

Then modify the other remote objects to use that remote point.  No more conflict. 

Very last point…in R16 it will now tell you when you have ‘duplicate’ remote objects  (like the remote force + displacement shown above). 

image

Hope this helps!