All Things ANSYS 049: Predicting & Controlling Environmental Pollution with ANSYS Simulation

 

Published on: October 21st, 2019
With: Eric Miller & Clinton Smith
Description:  

In this episode, your host and Co-Founder of PADT, Eric Miller is joined by PADT’s CFD Team Lead Engineer Clinton Smith for a discussion on how ANSYS fluids tools are being used to help predict and control environmental pollution. This information is helping engineers in a variety of ways, such as understanding the formation and dispersion of pollutants such as NOx, SOx, CO and soot.

If you would like to learn more about what this application is capable of, check out our webinar on the topic here: https://www.brighttalk.com/webcast/15747/374571

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Predicting & Controlling Environmental Pollution with ANSYS Simulation – Webinar

Environmental pollution has been a fact of life for many centuries, though it became a real issue after the start of the industrial revolution. An estimated 6.5 million premature deaths have been linked to air pollution every year.

In order to properly combat this growing issue, the world’s leading minds have turned to a more effective tool for environmental analysis; numerical simulation. Computational fluid dynamics has proven to be a powerful tool when it comes to predicting and controlling air, water, and noise pollution.

Join PADT’s CFD Team Lead Engineer Clinton Smith to learn how ANSYS fluid mechanics solutions provide insight and detailed understanding of the formation and dispersion of pollutants such as NOx, SOx, CO & Soot as well as effective ways for modelling pollution control equipment such as ESP’s, bag filters, and wastewater treatment plants.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

ANSYS Mechanical – Overcoming Convergence Difficulties with the Semi-Implicit Method

In our last blog, we discussed using Nonlinear Adaptive Region to overcome convergence difficulties by having the solver automatically trigger a remesh when elements have become excessively distorted.  You can read it here:  http://www.padtinc.com/blog/ansys-mechanical-overcoming-convergence-difficulties-with-automatic-remeshing-nonlinear-adaptive-region/

This time we look at another tool for overcoming convergence difficulties, the Semi-Implicit method.  ANSYS, Inc. describes the semi-implicit method as a hybrid, combining features of both implicit and explicit finite element methods.

In highly nonlinear problems involving significant deformations we may get a solver error like this one: 

*** ERROR ***                           CP =   18110.688   TIME= 11:58:42
Solution not converged at time 0.921 (load step 1 substep 185).           Run terminated. 

Like it does with other problems that lead to convergence failures, the Solution branch will have telltale red lightning bolts, indicating the solution was not able to complete due to nonconvergence.

In this case, it can be difficult to determine from the error message in the solution output exactly what the problem is.  Plotting the Newton-Raphson residuals can be a good starting point.  In order to plot the Newton-Raphson residuals, though, we need to turn them on prior to solving.  See this older Focus blog for instructions on how to do that:

http://www.padtinc.com/blog/overcoming-convergence-difficulties-in-ansys-workbench-mechanical-part-i-using-newton-raphson-residual-information/

A plot of the Newton-Raphson residuals shows us where the highest force imbalance is in the model:

That’s a nice looking plot, but doesn’t tell us much without knowing more about the simulation.  The model is of a plastic bottle, subject to a force load tending to ‘crush’ the bottle from top to bottom.  There is a slight off center load as well, so that the force is not purely in the downward direction. 

The bottle is constrained with a fixed support on the bottom flat surface, and contact elements between the outer surface of the bottle and a fixed surface representing a table or floor.  This is to prevent the bottle from deflecting below the plane of that surface.

The material used is a polyethylene plastic, from the ANSYS Granta Materials Data for Simulation add-on, which is a great tool to get access to hundreds of materials for ANSYS simulations.  The geometry of the bottle was created in SpaceClaim as a surface body and meshed with shell elements in ANSYS Mechanical. 

The solution was run as nonlinear static, with large deflection effects turned on.  Automatic Time Stepping was manually activated with a starting and minimum number of substeps set to 200 and a maximum number of substeps set to 1000.

With these settings, the solution ran to about 92% of the full load, where it failed to solve after bisecting to the maximum number of substeps (minimum ‘time’ step).  The force convergence plots showed the bisections and failed convergence attempts started at about iteration 230 and ‘time’ 0.92.  (If you are not familiar with the convergence plots from a Newton-Raphson method solution, please see our Focus archives for an article on the topic – look for the link to the GST Plot:  http://www.padtinc.com/blog/wp-content/uploads/oldblog/PADT_TheFocus_08.pdf).

Even though our solution has not converged, it is probably helpful to view the deformation results for substeps which did converge (at partial load) as well as the unconverged results which will be written as the last set of results.

This plot shows the total deformation at the last converged substep (time value 0.92):

This plot shows the unconverged solution, ‘extrapolated’ to time 1.0:

From the unconverged deformation plot we can see that the top of the bottle is tending to experience very large deformations.  It’s not surprizing that convergence difficulties are being encountered.

One of the techniques we can utilize to get past this problem is the Semi-Implicit method in ANSYS Mechanical.  As of 2019 R2, this needs to be activated using a Mechanical APDL command object, but it can be as simple as adding a single word within the Static Structural branch:

SEMIIMPLICIT

There are some optional fields on that command, but minimally just the one word command is needed.

Once the semi-implicit method is activated, if the solver detects the default implicit solver is having trouble, it automatically switches to the semi-implicit solving scheme.  Like a traditional explicit solver, the semi-implicit method can better handle very large deformation, transitory-like effects.  The method can switch back to implicit if conditions warrant for a more efficient solution and in fact can switch back and forth between the two schemes.

The solver output will tell us if the semi-implicit scheme has been activated:

EQUIL ITER  26 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.9526   

     NONLINEAR DIAGNOSTIC DATA HAS BEEN WRITTEN TO  FILE: file.nd004

     DISP CONVERGENCE VALUE   =  0.3918      CRITERION=   1.448     <<< CONVERGED

     LINE SEARCH PARAMETER =  0.4113     SCALED MAX DOF INC =  0.3918   

     FORCE CONVERGENCE VALUE  =   44.44      CRITERION=  0.9960   

     MOMENT CONVERGENCE VALUE =   3.263      CRITERION=  0.1423   

    Writing NEWTON-RAPHSON residual forces to file: file.nr001

    >>> TRANSITIONING TO SEMI-IMPLICIT METHOD

     NONLINEAR DIAGNOSTIC DATA HAS BEEN WRITTEN TO  FILE: file.nd001


    EQUIL ITER   1 COMPLETED.  NEW TRIANG MATRIX.  MAX DOF INC=  0.8788E-04

     NONLINEAR DIAGNOSTIC DATA HAS BEEN WRITTEN TO  FILE: file.nd002

 *** LOAD STEP     1   SUBSTEP   185  COMPLETED.    CUM ITER =    284

 *** TIME =  0.920010         TIME INC =  0.100000E-04

    Kinetic Energy = 0.2157        Potential Energy =  60.59   

 *** AUTO STEP TIME:  NEXT TIME INC = 0.10000E-04  UNCHANGED

     NONLINEAR DIAGNOSTIC DATA HAS BEEN WRITTEN TO  FILE: file.nd003

There are some ‘symptoms’ of the switch from implicit to explicit.  The most obvious is probably that the force convergence plot will stop updating. 

Changing the Solution Output to the Solver Output will show the explicit scheme being used in that case.  The telltale is the information on Response Frequency and Period (the example shown is a static structural solution).

Deformation plot trackers and contact trackers continue to work as expected during the solution, however.

Using the semi-implicit method, the solution was able to successfully converge to the full load, and converged results are available at the last time point:

We also used the new keyframe animation technique to animate the results time history.

The semi-implicit method is well documented within the Mechanical APDL 2019 R2 Help, in the Advanced Analysis Guide, chapter 3 on Semi-Implicit Method.  We suggest reviewing that information to get a much better handle on the technique.

We hope this is helpful in getting your nonlinear solutions to converge the full value of applied loads.

Press Release: PADT Recognized for its Contribution to Arizona’s Tech Community with Two Awards: Top Tech Exec by Phoenix Business Journal and Special AZBio Award

It was a special week for PADT when we received two awards for our activities in the Arizona business community. Every time anyone at PADT, or the company as a whole is recognized, it reflects the long term commitment our employees have made to our community, their focus on our customers, and their continued effort to simply be good at what they do.

The details for these two awards are given in the press release below. You can see a list of the fifteen awards PADT has received since 2002 here.

A big thank you to everyone who contributed to our success over the years. We are humbled by this type of recognition, so we don’t have much else to say.

The official press release is available as HTML or PDF.


PADT Recognized for its Contribution to Arizona’s Tech Community with Two Awards: Top Tech Exec by Phoenix Business Journal and Special AZBio Award

PADT Co-founder Eric Miller Honored in the CEO Category by the Phoenix Business Journal and PADT’s 25Years of Contributions Recognized by AZBio

TEMPE, Ariz., Oct. 8, 2019 PADT, a leader in numerical simulation, product development, and 3D printing, is honored to announce that Principal and Co-founder, Eric Miller, is a winner of the Phoenix Business Journal’s 2019 Top Tech Exec Award in the CEO category.  On the heels of that honor, the state’s bioscience industry organization, AZBio, recognized the contributions PADT has made to the local medical technology community over the past 25 years with a special trophy presented at the 2019 AZBio Awards ceremony on October 2, 2019.

PBJ Top Tech Exec Award

“Thank you to the Phoenix Business Journal for recognizing our dedication to Phoenix’s innovation landscape,” said Miller. “We work hard to ensure the success of our clients, and I’m extremely proud of the company my co-founders and I have built together here at PADT. When our clients and employees are happy, there’s no limit to what we can achieve.”

Each year, the Phoenix Business Journal recognizes individuals for their involvement and influence in the technology industry with the AZ Top Tech Exec Awards. Miller was selected for his role in establishing PADT as an integral part of the local manufacturing ecosystem, providing market-leading numerical simulation tools from ANSYS, Inc., and the 3D printing systems from Stratasys across the Southwest.  PADT also assists companies through engineering consulting for design, test, and simulation and is the state’s largest provider of 3D printing services. Companies come to PADT for the tools and consulting they need to design and manufacture better products.

In addition to PADT’s extensive business victories, Miller was also chosen as a result of his continuous involvement in the Phoenix technology community. Miller is an angel investor with Arizona Tech Investors, and he frequently lends his time to advise entrepreneurs. He is also an active mentor for ACA’s Venture Ready Program and was recently named Vice-Chair of the Arizona Technology Council’s Board of Directors. He is also on the board of directors of BioAccel and is a regular guest contributor of articles on technology, business, and the local tech scene to the Phoenix Business Journal.

“Congratulations to Eric Miller and all of the 2019 Top Tech Execs,” said Ray Schey, market president and publisher, Phoenix Business Journal. “Eric is one of the key contributors to the Valley’s incredible growth in the technology sector. This recognition is acknowledgement of his, and the work of the other talented tech execs, in the industry. Arizona is being noticed both nationally and internationally for its innovation and growth in technology.”

AZBio Recognition

During the 2019 AZBio Awards, the Arizona Bioindustry Association recognized PADT’s 25th anniversary with a special award in recognition of the contribution the company has made to Arizona’s biotechnology community.  It was a special honor for PADT to receive the iconic double-double helix trophy that PADT has been 3-D printing for the AZBio awards for eight years.  

“Since it was founded in Arizona in 1994, PADT’s dedicated employees have provided their knowledge of innovation and enthusiasm for collaboration to advance our common goal of making Arizona a top-tier bioscience state,” said Joan Koerber-Walker, president and CEO, AZBio. “It was a privilege to recognize this trail-blazing company that’s grown to be the largest of its kind in the Southwest for its contributions.”

Although PADT provides products and services to companies across industries, the Bioscience sector has been a special focus of the company because of its disproportionately positive impact on the overall community. PADT’s involvement in groups like AZBio is way for the company to amplify its impact.

“PADT Co-founder Mark Johnson started our special commitment to the medical device industry and our contributions to the bioscience community early in the company’s history,” said Rob Rowan, director of Engineering, PADT. “Although Mark is unfortunately no longer with us, we continue to execute on his vision of bringing aerospace quality engineering to the medical sector, helping companies large and small translate their innovative ideas into viable products that improve patient outcomes across applications.”

About Eric Miller

As a Co-founder of PADT in 1994, Miller was able to pursue his interests in simulation, 3D printing, operations, and small business management. He is often called upon to write and speak on simulation, design, and 3D Printing as well as on startups and the high-tech sector. In addition, Miller is a board member for several tech-related organizations and Vice-Chair of the Arizona Technology Council. He holds a B.S. in Mechanical Engineering from UC Berkeley.

About PADT

PADT is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 90 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

All Things ANSYS 048: Topology Optimization & Simulation for Additive Manufacturing in ANSYS 2019 R3

 

Published on: October 7th, 2019
With: Eric Miller & Doug Oatis
Description:  

In this episode, your host and Co-Founder of PADT, Eric Miller is joined by PADT’s simulation support & application engineer Doug Oatis for a discussion on what is new in ANSYS 2019 R3 with regards to tools and applications for topology optimization and additive manufacturing.

If you would like to learn more about what’s new in this latest release, check out our webinar on the topic here: https://www.brighttalk.com/webcast/15747/372133?

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Frequency Dependent Material Definition in ANSYS HFSS

Electromagnetic models, especially those covering a frequency bandwidth, require a frequency dependent definition of dielectric materials. Material definitions in ANSYS Electronics Desktop can include frequency dependent curves for use in tools such as HFSS and Q3D. However, there are 5 different models to choose from, so you may be asking: What’s the difference?

In this blog, I will cover each of the options in detail. At the end, I will also show how to activate the automatic setting for applying a frequency dependent model that satisfies the Kramers-Kronig conditions for causality and requires a single frequency definition.

Background

Recalling that the dielectric properties of material are coming from the material’s polarization

(1)

where D is the electric flux density, E is the electric field intensity, and P is the polarization vector. The material polarization can be written as the convolution of a general dielectric response (pGDR) and the electric field intensity.

(2)

The dielectric polarization spectrum is characterized by three dispersion relaxation regions α, β, and γ for low (Hz), medium (KHz to MHz) and high frequencies (GHz and above). For example, in the case of human tissue, tissue permittivity increases and effective conductivity decreases with the increase in frequency [1].

Fig. 1. α, β and γ regions of dielectric permittivity

Each of these regions can be modeled with a relaxation time constant

(3)

where τ is the relaxation time.

(4)

The well-known Debye expression can be found by use of spectral representation of complex permittivity (ε(ω)) and it is given as:

(5)
(6)

where ε is the permittivity at frequencies where ωτ>>1, εs is the permittivity at ωτ>>1, and j2=-1. The magnitude of the dispersion is ∆ε = εs.

The multiple pole Debye dispersion equation has also been used to characterize dispersive dielectric properties [2]

(7)

In particular, the complexity of the structure and composition of biological materials may cause that each dispersion region be broadened by multiple combinations. In that case a distribution parameter is introduced and the Debye model is modified to what is known as Cole-Cole model

(8)

where αn, the distribution parameter, is a measure of broadening of the dispersion.

Gabriel et. al [3] measured a number of human tissues in the range of 10 Hz – 100 GHz at the body temperature (37℃). This data is freely available to the public by IFAC [4].

Frequency Dependent Material Definition in HFSS and Q3D

In HFSS you can assign conductivity either directly as bulk conductivity, or as a loss tangent. This provides flexibility, but you should only provide the loss once. The solver uses the loss values just as they are entered.

To define a user-defined material choose Tools->Edit Libraries->Materials (Fig. 2). In Edit Libraries window either find your material from the library or choose “Add Material”.

Fig. 2. Edit Libraries screen shot.

To add frequency dependence information, choose “Set Frequency Dependency” from the “View/Edit Material” window, this will open “Frequency Dependent Material Setup Option” that provides five different ways of defining materials properties (Fig. 3).

Fig. 3. (Left) View/Edit Material window, (Right) Frequency Dependent Material Setup Option.

Before choosing a method of defining the material please note [5]:

  • The Piecewise Linear and Frequency Dependent Data Points models apply to both the electric and magnetic properties of the material. However, they do not guarantee that the material satisfies causality conditions, and so they should only be used for frequency-domain applications.
  • The Debye, Multipole Debye and Djordjevic-Sarkar models apply only to the electrical properties of dielectric materials. These models satisfy the Kramers-Kronig conditions for causality, and so are preferred for applications (such as TDR or Full-Wave SPICE) where time-domain results are needed. They also include an automatic Djordjevic-Sarkar model to ensure causal solutions when solving frequency sweeps for simple constant material properties.
  • HFSS and Q3D can interpolate the property’s values at the desired frequencies during solution generation.

Piecewise Linear

This option is the simplest way to define frequency dependence. It divides the frequency band into three regions. Therefore, two frequencies are needed as input. Lower Frequency and Upper Frequency, and for each frequency Relative Permittivity, Relative Permeability, Dielectric Loss Tangent, and Magnetic Loss Tangent are entered as the input. Between these corner frequencies, both HFSS and Q3D linearly interpolate the material properties; above and below the corner frequencies, HFSS and Q3D extrapolate the property values as constants (Fig. 4).

Fig. 4. Piecewise Linear Frequency Dependent Material Input window.

Once these values are entered, 4 different data sets are created ($ds_epsr1, $ds_mur1, $ds_tande1, $ds_tandm1). These data sets now can be edited. To do so choose Project ->Data sets, and choose the data set you like to edit and click Edit (Fig. 5). This data set can be modified with additional points if desired (Fig. 6).

Fig. 5. (Left) Project data set selection, (right) defined data set for the material.
Fig. 6. A sample data set.

Frequency Dependent

Frequency Dependent material definition is similar to Piecewise Linear method, with one difference. After selecting this option, Enter Frequency Dependent Data Point opens that gives the user the option to use which material property is defined as a dataset, and for each one of them a dataset should be defined. The datasets can be defined ahead of time or on-the-fly. Any number of data points may be entered. There is also the option of importing or editing frequency dependent data sets for each material property (Fig. 7).

Fig. 7. This window provides options of choosing which material property is frequency dependent and enter the data set associated with it.

Djordjevic-Sarkar

This model was developed initially for FR-4, commonly used in printed circuit boards and packages [6]. In fact, it uses an infinite distribution of poles to model the frequency response, and in particular the nearly constant loss tangent, of these materials.

(9)

where ε is the permittivity at very high frequency,  is the conductivity at low (DC) frequency,  j2=-1, ωA is the lower angular frequency (below this frequency permittivity approaches its DC value), ωB is the upper angular frequency (above this frequency permittivity quickly approaches its high-frequency permittivity). The magnitude of the dispersion is ∆ε = εs-ε∞.

Both HFSS and Q3D allow the user to enter the relative permittivity and loss tangent at a single measurement frequency. The relative permittivity and conductivity at DC may optionally be entered. Writing permittivity in the form of complex permittivity [7]

(10)
(11)

Therefore, at the measurement frequency one can separate real and imaginary parts

(12)
(13)

where

(14)

Therefore, the parameters of Djordjevic-Sarkar can be extracted, if the DC conductivity is known

(15)

If DC conductivity is not known, then a heuristic approximation is De = 10 εtan δ1.

The window shown in Fig. 8 is to enter the measurement values.

Fig. 8. The required values to calculate permittivity using Djordjevic-Sarkar model.

Debye Model

As explained in the background section single pole Debye model is a good approximation of lossy dispersive dielectric materials within a limited range of frequency. In some materials, up to about a 10 GHz limit, ion and dipole polarization dominate and a single pole Debye model is adequate.

(16)
(17)
(18)
(19)
(20)

The Debye parameters can be calculated from the two measurements [7]

(21)

Both HFSS and Q3D allow you to specify upper and lower measurement frequencies, and the loss tangent and relative permittivity values at these frequencies. You may optionally enter the permittivity at high frequency, the DC conductivity, and a constant relative permeability (Fig. 9).

Fig. 9. The required values for Single Pole Debye model.

Multipole Debye Model

For Multipole Debye Model multiple frequency measurements are required. The input window provides entry points for the data of relative permittivity and loss tangent versus frequency. Based on this data the software dynamically generates frequency dependent expressions for relative permittivity and loss tangent through the Multipole Debye Model. The input dialog plots these expressions together with your input data through the linear interpolations (Fig. 10).

Fig. 10. The required values for Multipole Debye model.

Cole Cole Material Model

The Cole Cole Model is not an option in the material definition, however, it is possible to generate the frequency dependent datasets and use Frequency Dependent option to upload these values. In fact ANSYS Human Body Models are built based on the data from IFAC database and Frequency Dependent option.

Visualization

Frequency-dependent properties can be plotted in a few different ways. In View/Edit Material dialog right-click and choose View Property vs. Frequency. In addition, the dialogs for each of the frequency dependent material setup options contain plots displaying frequency dependence of the properties.

You can also double-click the material property name to view the plot.

Automatically use causal materials

As mentioned at the beginning, there is a simple automatic method for applying a frequency dependent model in HFSS. Select the menu item HFSS->Design Setting, and check the box next to Automatically use casual materials under Lossy Dielectrics tab.

Fig. 11. Causal material can be enforced in HFSS Design Settings.

This option will automatically apply the Djordjevic-Sarkar model described above to objects with constant material permittivity greater than 1 and dielectric loss tangent greater than 0. Keep in mind, not only is this feature simple to use, but the Djordjevic-Sarkar model satisfies the Kramers-Kronig conditions for causality which is particularly preferred for wideband applications and where time-domain results will also be needed. Please note that if the assigned material is already frequency dependent, automatic creation of frequency dependent lossy materials is ignored.

If you would like more information or have any questions about ANSYS products please email info@padtinc.com

References

  • D.T. Price, MEMS and electrical impedance spectroscopy (EIS) for non-invasive measurement of cells, in MEMS for Biomedical Applications, 2012, https://www.sciencedirect.com/topics/materials-science/electrical-impedance
  • W. D. Hurt, “Multiterm Debye dispersion relations for permittivity of muscle,” IEEE Trans. Biomed. Eng, vol. 32, pp. 60-64, 1985.
  • S. Gabriel, R. W. Lau, and C. Gabriel. “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues.” Physics in Medicine & Biology, vol. 41, no. 11, pp. 2271, 1996.
  • Dielectric Properties of Body Tissues in the Frequency Range 10 Hz – 100 GHz, http://niremf.ifac.cnr.it/tissprop/.
  • ANSYS HFSS Online Help, Nov. 2013, Assigning Materials.
  • A. R. Djordjevic, R. D. Biljic, V. D. Likar-Smiljani, and T. K. Sarkar, “Wideband frequency-domain characterization of FR-4 and time-domain causality,” IEEE Trans. on Electromagnetic Compatibility, vol. 43, no. 4, p. 662-667, Nov. 2001.
  • ANSYS HFSS Online Help, 2019, Materials Technical Notes.

Useful Links

Piecewise Linear Input

Debye Model Input

Multipole Debye Model Input

Djordjevic-Sarkar

Enter Frequency Dependent Data Points

Modifying Datasets.

Mars, Hearts, Spaceships, and Universities: 2019 Colorado Additive Manufacturing Day a Success

Engineers, educators, and enthusiasts gathered on the green lawn of beside the Platte River at the Blind Faith Brewing to talk about Additive Manufacturing. Over 170 attendees (and two dogs) met each other, caught up with old colleagues, and shared their AM journey during the breaks and listened to 13 presenters and panelists. 12 antipasto platters and 30 pizzas were consumed, and 298 beers or sodas were imbibed. By the numbers and by type of interaction we saw, a successful event all around.

This was the fourth annual gathering, hosted by PADT and sponsored by our partners at this brewery. We could not have put this event on without the support of Stratasys, ANSYS, ZEISS, and Desktop Metal. We also want to thank our promotional partners, Women in 3D Printing and Space for Humanity who both brought new people to our community. Carbon, Visser and a student project with Ball Aerospace did their part as exhibitors.

Check out the Slideshow at the end of this post to get a visual snapshot of the day.

We want to thank the true stars of our event, the speakers and panelists who shared their knowledge and experience that turned a great gathering into a learning experience.

We started the morning off with an inspirational keynote from Dr. Robert Zubrin. A visionary in the space community and long term champion of going to Mars, Dr. Zubrin shared with us his observations about the new space race with his talk: “The Case for Space: How the Revolution in Spaceflight Opens Up a Future of Limitless Possibilities.” He left the packed audience energized and ready to do our part in this next step in humanities exploration of the universe. He stayed after to talk with people and sign copies of his book, which you can find here.

We then heard from user David Waller of Ball Aerospace on his experience with their Desktop Metal system. He went over the testing, lessons learned, and usage of their Studio system. It was a great in-depth look at someone implementing a new technology. There is a lot of interest around this lower-cost approach to producing metal parts, and the audience was full of questions.

Sticking with the Desktop Metal technology, PADT’s very own Pamela Waterman talked about how PADT is using our in-house Zeiss Optical Scanning hardware and software to inspect the parts we are making with our Desktop Metal System. She shared what we have learned about following the design guidelines that are developing for this technology and how scanning is a fast and accurate way to determine the final geometry created in the three-step process of building a green part, debinding, and sintering.

Next up was Christopher Robinson form ANSYS, Inc. to talk about recent additions to the ANSYS Additive products. He shared how customers are using simulation to design parts for metal powder bed fusion AM and then model the build process to predict and avoid failures as well as compensate for the distortion inherent in the process. The key takeaway was that simulation is the solution for getting parts built right the first time.

After a short break, and some AM trivia that won some PADT25 T-Shirts for people who knew the history of 3D Printing, we heard all about the new V650 Flex Stereolithography system that Stratasys recently introduced. Yes, Stratasys now makes and sells an SL system and it is literally a dream machine designed by people with decades of AM and Stereolithography experience. Learn more about this open and powerful system here.

Another AM technology was up next when Nick Jacobson spoke about Voxel Printing with PolyJet technologies. He discussed how he varies materials and colors spacially to create unique and realistic replicas for medicine and engineering. He also showed how the voxel-based geometry he creates can be used to create Virtual Reality representations of objects. Much of their work revolves around the visualization of hearts for adults and children to improve surgery planning. While we had been focused on space at the start of the afternoon, he reminded us of the immediate and life saving medical applications of AM.

And then we moved back to space with a presentation from Lockheed Martin‘s Brian Kaplun on how they are using AM to create parts that will fly on the Orion Spacecraft. Making production parts with 3D Printing has been a long-term goal for the whole industry, and Lockheed Martin has done the long and hard work of design, test, and putting processes in place to make this dream a reality. One of the biggest takeaways of his talk was how once the Astronauts saw a few AM parts in the capsule, they started asking of its use to redesign other tools and components. The ultimate end-users, they saw the value of lightweight and strong parts that could be made without the limitations of traditional manufacturing.

We finished up the day, after another break and some more trivia, with a fascinating panel on AM at Colorado’s leading Universities. We were lucky to have Ray Huff from Wohlers Associates moderate a distinguished group of deans, directors, and professors from four outstanding but different institutions:

  • Martin Dunn PhD,  Dean of Engineering, CU Denver
  • Jenifer Blacklock PHD, Mechanical Engineering Professor – Colorado School of Mines
  • David Prawel PhD, Director, Idea-2-Product 3D Printing Lab, Colorado State University 
  • Matt Gordon, PhD,  Chair, Mechanical Engineering, University of Denver 

Their wide-ranging discussion covered their education and research around AM. A common theme was industry cooperation. Each school shared how they use AM to help students not just make things, but also understand how parts are made. The discussion was fantastic and ended far too soon, which is always an indicator of a great group of experts.

And that sums up our great day, leaving out several hundred side conversations that went on. Check out this slide show to get a feel for how energetic and interesting the afternoon was.

As everyone left, some reluctantly and after one more beer, the common comment was that they can’t wait to get together again with everyone. We hope that next year we will have more speakers and participants and continue to support the growth of Additive Manufacturing in Colorado.

A quick note about the location: You are not wrong if you remember a different name for the three previous events. St. Patricks’s is now Blind Faith and the new owners could have not been more welcoming. Plus, they have more Belgian’s, which I am a big fan of.

Topology Optimization & Simulation for Additive Manufacturing in ANSYS 2019 R3 – Webinar

ANSYS offers a complete simulation workflow for additive manufacturing (AM) that allows you to transition your R&D efforts for metal additive manufacturing into a successful manufacturing operation. This best-in-class solution for additive manufacturing enables simulation at every step in your AM process. It will help you optimize material configurations and machine and parts setup before you begin to print. As a result, you’ll greatly reduce — and potentially eliminate — the physical process of trial-and- error testing.

Through the use of ANSYS tools such as Additive Prep, Print, and Science, paired with topology optimization capabilities in ANSYS Mechanical Workbench, the need for physical process of trial-and-error testing has been greatly reduced.

Join PADT’s Simulation Support and Application Engineer Doug Oatis for an exploration of the ANSYS tools that help to optimize additive manufacturing, and what new capabilities are available for them when upgrading to ANSYS 2019 R3. This presentation includes updates regarding:

  • Level-set based topology optimization
  • The export of build files directly to AM machines
  • Switching between viewing STL supports, mesh, or element densities
  • Multiple support being made in a single simulation (volume-less & solid supports)
  • And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 047: Mechanical Solver, Element, & Contact Enhancements in ANSYS 2019 R3

 

Published on: September 24th, 2019
With: Eric Miller, Joe Woodward, Doug Oatis, & Ted Harris
Description:  

In this episode, your host and Co-Founder of PADT, Eric Miller is joined by PADT’s simulation support manager Ted Harris, specialist mechanical engineer Joe Woodward, and simulation support & application engineer Doug Oatis for a discussion on what is new in ANSYS 2019 R3 with regards to the mechanical solver, element, and contact enhancements.

If you would like to learn more about what’s new in this latest mechanical release, check out our webinar on the topic here: https://www.brighttalk.com/webcast/15747/371263

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Mechanical Solver, Element, & Contact Enhancements in ANSYS 2019 R3 – Webinar

ANSYS 2019 R3 brings a whole host of improvements to various mechanical features, designed to enhance overall optimization and ease of use. Key updates such as those made in regards to the mechanical solver, MAPDL elements, and contact modeling capabilities help make this release essential for performing effective analyses, and deriving valuable results from said analyses. 

For example, being able to simulate contact correctly means that engineers can simulate the change in load paths when parts deform and confidently predict how assemblies will behave in the real world.

Join PADT’s Simulation Support Manager Ted Harris, for a look at the latest mechanical solver, element, and contact updates available in ANSYS 2019 R3. This presentation includes enhancements made for:

Improved scaling for various solvers

Surface stress evaluation for axisymmetric solid elements

Piezoelectric analyses

Nonlinear radial gap elements

And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

All Things ANSYS 046: The Founding of CFX

 

Published on: September 9th, 2019
With: Eric Miller, Paul Galpin, & Brad Hutchinson
Description:  

In this episode, your host and Co-Founder of PADT, Eric Miller is joined by Paul Galpin and Brad Hutchinson, two founders of the Computational Fluid Dynamics (CFD) simulation tool now owned by ANSYS, called CFX. They discuss how they initially got into the world of simulation, the current state of CFD, and what is important to be aware of as it continues to grow and develop.

If you would like to learn more about what’s new in the latest version of CFX, check out PADT’s webinar on fluids updates in ANSYS 2019 R3 here: https://www.brighttalk.com/webcast/15747/369903

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Fluids Innovations in ANSYS 2019 R3 – Webinar

Products such as ANSYS Fluent, CFX, and Ensight work together in a constantly improving tool kit that is developed to provide ease of use improvements for engineers simulating fluid flows and the impact those flows have on physical models. 

Fluids simulation users will find that ANSYS 2019 R3 includes many enhancements that further simplify the user experience and broaden use to new applications. The new Fluent experience has been improved so you can enjoy more CFD in less time, with less training.

Join PADT’s Simulation Support and Application Engineer, Sina Ghods, for a look at what is new and improved for fluids simulation tools in ANSYS 2019 R3. This presentation includes updates regarding: 

  • Usability Enhancements
  • Watertight Geometry Workflow
  • TurboGrid & BladeEditor
  • Meshing Enhancements
  • And many more innovative capabilities

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Video Interview: Topology Optimization versus Generative Design

While attending the 2019 RAPID + TCT conference in Detroit this year, I was honored to be interviewed by Stephanie Hendrixson, the Senior Editor of Additive Manufacturing magazine and website. We had a great chat, covering a lot of topics. I do tend to go on, so it turned into two videos.

The first video is about the use of simulation in AM. You should watch that one first, here, because we refer back to some of the basics when we zoomed in on optimization.

Generative design is the use of a variety of tools to drive the design of components and systems to directly meet requirements. One of those tools, the most commonly used, is Topological Optimization. Stephanie and I explore what it is all about, and the power of using these technologies, in this video:

You can view the full article on the Additive Manufacturing website here.

If you have any questions about how you can leverage simulation to add value to your AM processes, contact PADT or shoot me an email at eric.miller@padtinc.com.

Video Interview: 3 Roles for Simulation in Additive Manufacturing

While attending the 2019 RAPID + TCT conference in Detroit this year, I was honored to be interviewed by Stephanie Hendrixson, the Senior Editor of Additive Manufacturing magazine and website. We had a great chat, covering a lot of topics. I do tend to go on, so it turned into two videos.

In the first video, we chat about how simulation can improve the use of Additive Manufacturing for production hardware. We go over the three uses: optimizing the part geometry to take advantage of AM’s freedom, verifying that the part you are about to create will survive and perform as expected, and modeling the build process itself.

You can read the article and watch the video here on the Additive Manufacturing website. Or you can watch it here:

If you have any questions about how you can leverage simulation to add value to your AM processes, contact PADT or shoot me an email at eric.miller@padtinc.com.

For the second interview, we focus on Topological Optimization, Generative design, and the difference between the two. Check that out here.

3D Printed Parts Create a Tricked-Out Truck

PADT’s Austin Suder is a Solidworks CAD wizard, a NASA design-competition (Two for the Crew) winner and a teaching assistant for a course in additive manufacturing (AM)/3D printing. Not bad for someone who’s just started his sophomore year in mechanical engineering at Arizona State University.

PADT's Austin Suder 3D printed these custom LED reverse-light housings in carbon fiber PLA, then added heat-set inserts to strengthen the assembly and mounting structure. (Image courtesy Austin Suder)
PADT’s Austin Suder 3D printed these custom LED reverse-light housings in carbon fiber PLA, then added heat-set inserts to strengthen the assembly and mounting structure. (Image courtesy Austin Suder)

In last month’s PADT blog post about adding heat-set inserts to 3D printed parts we gave a shout-out to Austin for providing our test piece, the off-road LED light unit he had designed and printed for his 2005 Ford F-150. Now we’ve caught up with him between classes to see what other additions he’s made to his vehicle, all created with his personal 3D printers and providing great experience for his part-time work with Stratasys industrial printers in PADT’s manufacturing department.

Q: What has inspired or led you to print multiple parts for your truck?

I like cars, but I’m on a college budget so instead of complaining I found a way to fix the problem. I have five 3D printers at my house – why not put them to work! I understand the capabilities of AM so this has given me a chance to practice my CAD and manufacturing skills and push boundaries – to the point that people start to question my sanity.

Q: How did you end up making those rear-mount LED lights?

I wanted some reverse lights to match the ones on the front of my truck, so I designed housings in SolidWorks and printed them in carbon fiber PLA. Then I soldered in some high-power LED lights and wired them to my reverse lights. These parts made great use of threaded inserts! The carbon fiber PLA that I used was made by a company called Vartega that recycles carbon fiber material. (Note: PADT is an investor of this company.)

Q: In the PADT parking lot, people can’t help but notice your unusual tow-hitch. What’s the story with that?

I saw a similar looking hitch on another car that I liked and my first thought was, “I bet I could make that better.” It’s made from ABS painted chrome (not metal); I knew that I would never use it to tow anything, so this opened up my design freedom. This has been on my truck for about a year and the paint has since faded, but the printed parts are still holding strong.

An adjustable-height "topology optimized" trailer hitch Austin designed and printed in ABS. The chrome paint-job has many passersby doing a double-take, but it's just for fun, not function. (Image courtesy PADT)
An adjustable-height “topology optimized” trailer hitch Austin designed and printed in ABS. The chrome paint-job has many passersby doing a double-take, but it’s just for fun, not function. (Image courtesy PADT)

This part also gets questioned a lot! It’s both a blessing and a curse. In most cases it starts when I’m getting gas and the person behind me starts staring and then questions the thing that’s attached to the back of my truck. The conversation then progresses to me explaining what additive is, to a complete stranger in the middle of a gas station. This is the blessing part because I’m always down for a conversation about AM; the downside is I hate being late for work.

Q: What about those tow shackles on your front bumper?

Unique ABS printed tow shackles - another conversation-starter. (Image courtesy PADT)
Unique ABS printed tow shackles – another conversation-starter. (Image courtesy PADT)

Those parts were printed in ABS – they’re not meant for use, just for looks. I’ve seen towing shackles on Jeeps and other trucks but never liked the look of them, so again I designed my own in this pentagon-shape. I originally printed them in red but didn’t like the look when I installed them; the unusual shading comes because I spray-painted them black then rubbed off some of the paint while wet so the red highlights show through.

Q: Have you printed truck parts in any other materials?

Yes, I‘ve used a carbon-fiber (CF) nylon and flexible TPU (thermoplastic polyurethane) on filament printers and a nylon-like resin on a stereolithography system.

The CF nylon worked well when I realized my engine bay lacked the real estate needed for a catch can I’d bought. This was a problem for about five minutes – then I realized I have the power of additive and engineered a mount which raised the can and holds it at an angle. The mount makes great use of complex geometry because AM made it easy to manufacture a strong but custom-shaped part.     

Custom mount, 3D printed in carbon-fiber reinforced nylon, puts aftermarket catch-can in just the right location. (Image courtesy Austin Suder)
Custom mount, 3D printed in carbon-fiber reinforced nylon, puts aftermarket catch-can in just the right location. (Image courtesy Austin Suder)

After adding the catch can to my engine, I needed a way to keep the hoses from moving around when driving so I designed a double S-clip in TPU. The first design didn’t even come close to working – the hoses kept coming loose when driving – so I evaluated it and realized that the outer walls needed to be thicker. I made the change and printed it again, and this time it worked great. In fact, it worked so well that when I took my truck to the Ford dealership for some warranty work, they went missing. (It’s OK Ford, you can have them – I’ll just print another set.)    

Just-right 3D printed clips keep hoses anchored and out of the way. ((Image courtesy Austin Suder)
Just-right 3D printed clips keep hoses anchored and out of the way. ((Image courtesy Austin Suder)

Other parts I printed in TPU included clips for the brake-lines. I had seen that my original clip had snapped off, so when I had the truck up on jacks, I grabbed my calipers and started designing a new, improved version. Thirty minutes later I had them in place.

I also made replacement hood dampeners from TPU since they looked as though they’d been there for the life of the truck. I measured the old ones, used SolidWorks to recreate them (optimized for AM), printed a pair and installed them. They’ve been doing great in the Arizona heat without any deformation.      

New hood-dampeners printed in TPU have just the right amount of give. (Image courtesy Austin Suder)
New hood-dampeners printed in TPU have just the right amount of give. (Image courtesy Austin Suder)

My last little print was done on my SLA system in a material that behaves like nylon. (This was really just me showing off.) The plastic clips that hold the radiator cover had broken off, which led me to use threaded sheet-metal inserts to add machine threading to the fixture. I then purchased chrome bolts and made some 3D printed cup-washers with embossed text for added personalization and flair.  

Even the cup-washers got a 3D printed make-over on Austin's F150: printed in white resin on an SLA system, these parts got a coat of black paint and then some sanding, ending up with a two-color custom look. (Image courtesy PADT)
Even the cup-washers got a 3D printed make-over on Austin’s F150: printed in white resin on an SLA system, these parts got a coat of black paint and then some sanding, ending up with a two-color custom look. (Image courtesy PADT)

Q: What future automotive projects do you have in mind?

I’m working on a multi-section bumper and am using the project to standardize my production process – the design, material choice, sectioning and assembling. I got the idea because I saw someone with a tube frame car and thought it looked great, which led to me start thinking about how I could incorporate that onto my truck.

When I bought my F-150, it had had a dent in the rear bumper. I was never happy with this but didn’t have the money to get it fixed, so at this point the tube-frame look came full circle! I decided that I was going to 3D print a tube-frame bumper to replace the one with a dent. I started by removing the original bumper, taking measurements and locating possible mounting points for my design. Then I made some sketches and transferred them into SolidWorks.

The best part about this project is that I have additive on my side. Typical tube frame construction is limited by many things like bend allowance, assembly, and fabrication tooling. AM has allowed me to design components that could not be manufactured with traditional methods. The bumper will be constructed of PVC sections connected by 50 ABS printed parts, all glued together, smoothed with Bondo and filler primer then painted black. This is a large project!  It will take a lot of hand-finishing, but it will be perfect.

Q: If you were given the opportunity to work on any printer technology and/or material, what would you want to try working with?

Great question! If I had the opportunity to use AM for automotive components, I would redesign internal engine components and print them with direct metal laser sintering (DMLS), one of PADT’s other AM technologies. I would try printing part like piston rods, pistons, rocker arms, and cylinder valves. Additive is great for complex geometries with exotic materials.

Go Austin! Can’t wait to see what your truck looks like when you visit over semester break.

To learn more about fused deposition modeling (FDM/filament), stereolithography (SLA), selective laser sintering (SLS) and DMLS printers and materials, contact the PADT Manufacturing group; get your questions answered, have some sample parts printed, and share your success tips.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.