Spinning Gears: 3D Printing Awards for 2016 AZ SciTech Festival Sponsors

SciTech-Festival-Award-2016-2For several years now PADT has 3D Printed special thank you awards for the fantastic companies that sponsor the Arizona SciTech Festival.  This year we decided to stick with the color of the Stratasys Connex3 but add some moving parts. This gear design spins around and was made as one part, we just wash the support material out of the gaps between parts.

This is a great example of going directly from a CAD model to a custom part.  Each award has the recipient’s name printed on the smaller gear.  Everything was designed in an hour or so and it took about another hour to add in the 30 or so names.  We think these may be the best awards we have made so far.

SciTech-Festival-Award-2016-1

SciTech-Festival-Award-2016-3

Here is a video showing off how they spin:

Awards are kind of simple and fun. But the same technology is applied by PADT to help our customers design and build better medical devices, rockets, aircraft engines, computers, and pretty much any physical product you can think of.  Give us a call at 1-800-293-PADT or email info@padtinc.com to see how “We Make Innovation Work”

3D Color Printing the 2014 Arizona SciTech Festival Awards

photo 2The best way to promote and celebrate science and technology is with science and technology.  And this year PADT was able to do just that by using 3D Color Printing to make the recognition awards for the 2014 sponsors of the Arizona SciTech Festival.

The Arizona SciTech Festival is a new but growing player in the Arizona STEM landscape.  After three short years it has become the preferred way for science and technology companies and educators to engage with the public.  This year’s festival, held in February and March, was a huge success.  And none of it would be possible without the support of sponsors. PADT was honored to once again the awards that are given to these sponsors in recognition of their contributions. 

In the past we mixed traditional manufacturing and 3D Printing to make the awards. But this year we were able to use our new Stratasys Objet500 Connex3 to make the bulk of this years awards, and our Stratasys FORTUS 400 to make the stands.  The resulting awards are better than we had hoped for. 

The Process

The way the color printer works is you have to create a separate STL file for each color you want to print. So I needed to take a 2D vector art file and convert it into a collection of 3D STL files that represent the part I want printed.

I started by taking an Adobe Illustrator file of the AZ SciTech Festival logo, cleaning it up, and exporting it as a *.DWG file.
azstf-award-illustrator
I then imported it into my CAD tool. I happen to use SolidEdge, but the process should work with any modern CAD tool. I had to clean up the lines a lot.  In a graphic art image you can have small gaps, little line segments, and even polygons that self intersect. But in CAD you have to clean that all up. Plus some features were just too small to see in the 3D Printed object, so I simplified those. This was the most difficult part of the process.
azstf-award-solidedge-sketch

Once everything is clean you simply go through and extrude each polygon that you want printed, using the cleaned up sketch as your geometry.  Here is the first solid, and the simplest, the tail:
azstf-award-solidedge-extrude1

Once all the polygons are extruded, I assigned colors so I could visualize what the final part would look like. I also put a round on all the top edges, knowing from experience that even putting a small round on a part like this will increase the final parts attractiveness.
azstf-award-solidedge-extruded

The base needed to be a separate solid, because I needed it to be a different color. So I just made a new part for that and made an assembly. This keeps all of the solids separate. The letters were made just like the lizard logo, I went in to Adobe Illustrator and created the text outline, following the circle that defines the award. I exported that as DWG, imported it into SolidEdge, then extruded each letter.  
azstf-award-solidedge-medalian

The next step was to export the assembly as an STL file.  This file contained all the solids.  This was read in to the software that comes with the Objet500 Connex3. The operator then had to click on each object and assign a color from the chosen pallet.  It turns out that the official ScitTech Festival colors match one of the pallets closely, so we were able to get all the colors in the print. 

Once this was done, we simply printed 28 at a 3″ diameter, and 9 at 2″. Here is a video showing the printing process.

The resolution and brightness of the colors was very nice. Here are some images. Color parts just look better.
p7

For the base, I just came up with something that was thin and easy to build in using FDM because I wanted a strong part that was inexpensive that would also take a decal with the recipients name on the front, and information about the award on the back.  
azstf-award-solidedge-base

Here is a stack of the printed bases.
photo 1

And the final awards, ready to go to all those sponsors.
p12

Why Does it Matter

This effort is great example of the power of 3D Printing to a create a smaller number of custom objects. Standard awards form an awards shop are cheaper, but they are generic.  Using traditional methods to make custom awards is expensive and often labor intensive.  By making the whole award using a 3D Printer we were able to reduce the cost and the time for these unique objects, and were able to use advanced technology to highlight the sponsorship of an event that celebrates just that.  Kind of cool.

It is also a great example of the long term power of 3D Printing.  As was covered in a recent blog post, the real power of this technology is that it lets people without manufacturing or craftsman skills to create real objects, without a collection of equipment they don’t need or don’t know how to use. The applications of this power are endless. 

If you want to learn more about how you can do your own 3D Printing or how PADT can provide it to you as a service, contact us today.

Color 3D Printing ANSYS ANSYS Mechanical and Mechanical APDL Results

[updated on 6/18/14 with images of an optimized bracket]

When we announced that Stratasys had released a color 3D Printer, I promised that I would figure out a way to get an ANSYS Mechanical or Mechanical APDL solution printed in 3D as soon as possible. Here it is:
3D-Color-FEA-Plot
Pretty cool.  I posted this picture on our social media and it got more retweets-shares-comments-likes-social media at’a boys than anything we have ever posted.  So there is definitely some interest in this. Now that the initial “WOW!” factor is gone, it is time to talk technical details and share how to get a plot made.

Stratasys Objet500 Connex3

There have been some machine around for some time that can print colors. Unfortunately they used a process that deposited a binding agent (fancy name for glue) into a bed of powder. The glue could be died different colors, allowing you to mix three base colors to get a color part. The problem with that technology is that the parts were faded and very fragile. On top of that the machines were messy and hard to run.  

With the Objet500 Connex3 from Stratasys, we now have a machine that makes robust and usable prototypes, that can be printed in color. The device uses inkjet print heads to deposit a photopolymer (a resin that hardens when you shine ultraviolet light on it) one layer at a time. This machine has four print heads: one for support, one for a base material, and two for colored material.   The base material can be black, white, or clear.  Then you can mix two colors in to get a 46 color pallet on a given run.  Download the brochure here for more details on the device, or shoot us an email.

As an example of how to use this technology, we took the results from a modal analysis on a simple low-pressure turbine blade (from a jet engine) and plotted out the deflection results for the 1st, 3rd, and 7th mode. The 7th mode also includes the exaggerated deflected shape.

Turbine-Blade-Modal-s

[Added 6/18/14]  

We recently combined ANSYS and Stratasys products for an optimization test case for a customer. We used Toplogoical optimization to remove chunks of material from an aerospace mounting bracket.  Then we 3D plotted the results to share with the international team looking at using this process to design parts that are lighter because they are not constrained by traditional manufacturing requirements. Here is what the first pass on the part looked like:
TopoOptMount_7

Getting a Printable File 

Almost every Additive Manufacturing machine, from 3D Printers to Manufacturing Systems, use an STL file as the way to define a part to be made.  The file contains triangular facets (a mesh) on the surface. The problem is that this file does not have a standard for defining colors.  The way that we get around this is you make an STL file for each color you want, sort of an STL assembly. Then when you load the files into the machine, you assign colors to each STL object.  That is great if you are printing an assembly and each solid object in you Model is a different color, but gets a bit dicey for a results contour.

So, we need a way to get an STL file for each color contour in your plot.  Right now non of the ANSYS products output an STL file.  Needless to say we have been talking with development about this and we hope there will be a built in solution at the next release.  In the interim, we have developed two methods.

Method 0: Have PADT Print your Part

Before we go over the two methods, we should mention that we offer almost every RP technology as a service to customers, including the new Objet500 Connex3. We have written a tool that converts ANSYS MAPDL models into STL’s that represent color bands.  It comes in two parts, a macro that you run to get the data, and a program we have that turns the data into STL files.

  So the easiest way to get a Color 3D Plot of your results is to:

  1. Download the macro ans2vtk.mac and run it. Instructions are in the header.
  2. Upload the resulting *.vtk file to PADT. Find instructions here.
  3. Email rp@padtinc.com and let us know the name of the file, that you want a Color 3D Print, and what units your part is and scale factor, if any, to apply to your part.  
  4. We will generate a quote.  
  5. You give us a PO or a credit card
  6. We pre-process the part and show you the resulting contours, making sure it is what you want
  7. We print it, then ship it to you.

This is a screen shot of the model in our internal tool:

3d-printing-ansys-results-valve-vtk

Method 0.5: Use the PADT Script

If you own a Connex3 and are not a service provider, we would be happy to share the internal script that we use with you.  You would follow the same process as above, but would run the script yourself to make the STL files. You will need to install some opensource tools as well. Email me to discuss.

Method 1: RST to CFD-Post to Magics 

This is how we did the first sample models, because it works out of the box and required no coding.  To use it you need to have a licence of  ANSYS CFD-Post and Magics from Materialise.  CFD Post outputs a color facet file in the VRML2 format, and Magics can convert that into a bunch of STL file.

NOTE: For this to work you need Magics and your contours need to be pretty simple. A complex part won’t work  because Magics won’t be able to figure out the STL volumes. 

We start by attaching a CFD Post object to our model:

project-page

Open up CFD Post and make a plot you like. If you don’t know ANSYS CFD Post, here is an article we did a while back on how to use it to post ANSYS Mechanical and Mechanical APDL results. 

Set the number of contours to a smaller number. You can have up to 46 colors, but that means you have to make 46 separate STL files by hand. I picked 7 contours, which gives me 6 colors:

plot_in_cfdpost

Now simply go to File > Save Picture and select VRML as your format. Note, it will bury the plot way down in your project directories, so I like to change the path to save it at the top level of the directory:

save-wrl

The next step is to read the file in to Magics.

WRL File in Magics_Color Code

In Magics, you can select facets by color and write each one out as a separate STL file.

Once you have done that, go in to the Objet Studio Software that came with your printer and assign colors to each STL file. We just kind of eyeball the closest color to the original plot:

FEA Objet studio

You can see here that we actually printed 3 at a time, just made copies and we only had to define colors on the original.  Then Print.

Here is what it looks like in the printer when it finished. We ran some other parts next to the three valves:
printing

You’ll notice it looks all yellow. That is the support material. It is water soluble and we just wash it off when the part is done. 

Method 2: Macro for Element Based Contours

That method kind of was a pain, so we decided it would be a good idea to write a little macro in APDL that does the following:

  1. Specify number of colors and value to plot.  (It uses the current selected nodes/elements.)
  2. Select elements by contour range
  3. Create surface elements on those elements
  4. Convert those surface elements in to an STL file for each contour.

The advantage of this approach is that ANSYS MAPDL directly creates the STL files and all you have to do is read that into Objet Studio and assign colors.  The disadvantage is that it is plotting element faces, so if a contour changes across a face, it doesn’t capture it. The way it works now is that the face color is represents the contour color for the lowest value on that face.  Not ideal, but I only had about 3 hours to write something from scratch and that is as far as I got.

This is what it looks like in Objet Studio:

macro-1-in-studio

Here is the macro: mkcolstl_mac.zip

Just run in in MAPDL or put it in ANSYS Mechanical as a post processing command snippet.

3D-plots-table