Monster in the Closet: PADT Goes Live with 512 Core HVPC CUBE Cluster

Categories: , ,

imageThere is a closet in the back of PADT’s product development lab. It does not store empty boxes, old files, or obsolete hardware.  Within that closet is a monster.  Not the sort of monster that scares little children at night.  No, this is a monster that puts fear into the heart of those who try to paint high performance computing as a difficult and expensive task only to be undertaking by those who are in the priesthood.  It makes salespeople who earn fat commissions by selling consulting services and unnecessary add-ons quake in fear.

This closet holds PADT’s latest upgrade to our compute infrastructure: a 512 core CUBE HVPC Cluster.  No data center, no special consultants, no expensive add-ons. Just 512 cores chugging away at solving FLUENT and CFX problems, and pumping a large amount of heat up into the ceiling.

Here are the specifics:

CUBE C512 Columbia Class Cluster

  • 512 AMD 2.4GHz Cores (in 8 nodes, 4 sockets per node, 16 cores per socket)
  • 2TB RAM (256 GB per node of DDR3 1600 ECC RAM)
  • Raid Controller Card (1 per node)
  • 24TB Data Disk Space (3TB per node of SAS2 15k drives in RAID0)
  • Infiniband (8 Port switch, 40 Gbps)
  • 52 Port GIGE switch connected to 2 GIGE ports per node
  • 42 U Rack with thermal convection ducting (chimney)
  • Keyboard, monitor, mouse in drawer
  • CENTOS (switching to RedHat soon)

We built this system with CFD simulation in mind.  The original goal was to provide a proof of concept to expand our CUBE HVPC offering, showing that you can create a cluster of this size, with very good speed, for a price that small and medium sized companies can afford.  We also needed a way to run large problems for benchmarks in support of our ANSYS sales efforts and to provide faster technical support our FLUENT and CFX customers.  We already have a growing queue of benchmarks waiting to get into the machine.

The image above is the glamour shot.  Here is what it looks like in the closet:

image

Keeping with our theme of High Value Performance Computing we stuck it into this closet that was built for telephone equipment and networking equipment back at the turn of the century when Motorola had this suite.  We were able to fit a modern rack in next to an old rack that was in there. We then used the included duct to push the air up into our ceiling space and moved the A/C ducting to duct right into the front of the units.  We did need to keep the flow going into the rack instead of into the area under the networking and telephone switches, so we used an old video game poster:

image
Anyone remember Ratchet and Clank? 
Best PS2 games ever.

It works well and adds a little color to the closet.

So far our testing has shown some great numbers. Not the fastest cluster out there, but if you look at the cost, it offers incredible performance.   You could add a drive array over Infiniband, faster chips, and some redundant power. And it will run faster and more reliably, but it will cost much more.  We are cheap so we like this solution.

Oh yea, with the parts from our old CFD cluster and some new bits, we will be building a smaller mini-cluster using INTEL chips, a GPU or two, and a ton of fast disk and RAM as our FEA cluster.  Look for an update on that in a couple of months.

Interested in getting a cluster like this for you computing pleasure?  A system configured like this one will run about $150,000 (video game poster is extra). Visit our CUBE page to learn more or just shoot an email to sales@padtinc.com.  Don’t worry, we don’t sell these with sales people, someone from IT will get back with you.

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

Share this post:

Upcoming Events

Apr 29
, 2025
New NVH Tools & Workflows in Ansys 2025 R1 - Webinar
Apr 29
, 2025
Design, Debug, and Test your Ansys Scade One Model - Webinar
May 01
, 2025
Applying Digital Engineering across Space Mission Analysis and Design - Webinar
May 07
, 2025
Meshing Updates in Ansys 2025 R1 - Webinar
May 07
, 2025
Transforming Robot Arm Design with Topology Optimization - Webinar
May 13
, 2025
Ansys Virtual Workshop - PCB Reliability with Sherlock
May 13
, 2025
Dynamic RF Interference: HFSS and STK for Antenna Array Control - Webinar
May 15
, 2025
Applying Digital Engineering across Space Mission Analysis and Design: Satellite - Webinar
May 21
, 2025
Optics Updates in Ansys 2025 R1 - Webinar
May 29
, 2025
Applying Digital Engineering across Space Mission Analysis and Design: Payload - Webinar
Jun 04
, 2025
Composites & Structural Optimization Updates in Ansys 2025 R1 - Webinar
Jun 09
- Jun 11
, 2025
TechConnect World 2025
Jun 18
, 2025
Fluent CPU - UI & UX Updates in Ansys 2025 R1 - Webinar
Jun 16
- Jun 20
, 2025
Turbo Expo
Jun 25
, 2025
E-Mobility and Clean Energy Summit
Jul 02
, 2025
Electric Machine & Consumer Electronics Updates in Ansys 2025 R1 - Webinar
Jul 11
, 2025
2025 Aerospace, Aviation, Defense and Manufacturing Conference
Jul 16
, 2025
HFSS Updates in Ansys 2025 R1 - Webinar
Aug 10
- Aug 13
, 2025
SmallSat 2025

Search the PADT Site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: