3D Printing Stained Glass: A Flower Grows One Layer at a Time

3D-Printed-Stained-Glass-Rose-squareI never thought I would be making my own decorative stained glass object d’art.- I’m not a craft person.  Fortunately I do have access to great software and some awesome 3D Printers. That is why I should challenge myself when our team let me know that our Stratasys Object500 Connex3 system had been loaded with a new color pallet that included transparent material. We are filling our new demo room with industrial examples as well as more artistic examples of what the technology can do. So I thought this would be a great chance to explore making a stained glass window.  It turned out to be fairly easy, and the result was better than I expected.

Making a Digital Model

Stained glass consists of pieces of colored glass cut to shape, held together by lead. The lead is called the came. So to make my 3D Printed part, I needed a solid model assembly where each pain of glass was a solid, and the lead, or cane, was one or more separate solids I could assign a dark color to.

Like most tasks these days, I started with a Google search for “simple stained glass window.” The search brought up of nice examples, but I wanted something simple for my first try.  This simple flower stood out:

Rose-stained-glass

It is from a tutorial that shows how to make your own real stained glass.

I took the image and imported it in to my CAD tool, SolidEdge, as a background in the drafting package. Then I used the sketcher to place splines on top of the image sort of representing the shape. If I had an artistic bone in my body, I probably could have started with a blank page and done something, but my lack of talent is well documented and I opted for tracing. It worked in 3rd grade, and it still works today.  The resulting sketch looked like this, shown next to the original image:

Rose-Stained-Glass-sketch-1

It is kind of hard to see in the image, but the “lead” in the image consists of boundaries, not a single line, forming a continuous area for all of the “lead” geometry. Each empty areas in the sketch was extruded up in the solid modeler to form the glass pieces.   Here is what the solid looked like when I was done:

Rose-Stained-Glass-1

I assigned transparent colors in the CAD system to visualize it, show my preferred colors to the person setting up the 3D print, and because I figured it would look cool when I rendered it. Which it did:

Rose-Stained-Glass-rendered-1

The next step was to simply save the assembly as an STL file.  Our prototyping department took that file, massaged it a bit, and assigned colors from the available pallet. 

If you remember earlier articles on the Connex3, it uses four print heads: one for support material, and two for color, and one for a base material. In this case we used Veroclear as the base, magenta, and blue.  Here is a 3D Print of the pallet we were working with (I used my computer monitor as a poor man’s light table, which looks bad on the picture but works well with your eyes):

3D-Printed-Color-Pallet

The team assigned the colors we chose to the solids I created and next time the machine was not printing parts that actually generate income, the ran it.

Here are some images of the results:

3D-Printed-Stained-Glass-Rose-1

3D-Printed-Stained-Glass-Rose-2

Here the final product is shown in front of the machine that it was made on:

3D-Printed-Stained-Glass-Rose-Connex3

When I find some fishing line, I’ll hang it in front of the window, but here you can see it near where it will end up in front of the window to our Demo room.

3D-Printed-Stained-Glass-Rose-Demo-room

Practical Applications

I have to say I’m pretty proud of my little side trip in to the artistic world, even if I did just trace someone’s design.  And I am a big backer of Art for Art’s sake.  However, that does not change the fact that we are an engineering company and I did do this to learn more about the technology so that we could apply it for customers.

Many parts that our customers make involve injection molding of different colored plastics, including transparent materials.  This project illustrated who easy it is to replicate those components for prototyping, as an assembly.  In addition to the clear material, we can run white, black, or even a soft rubber like material to replicate overmolding. 

The simple 3D printed stained glass window shows the power of Stratasys’ PolyJet technology for creating robust and accurate prototypes of a huge range of parts, reducing development time, and giving engineers and creatives both a better tool to produce a better final product. 

If you would like to learn more about this technology or to have PADT print parts for you, please feel free to contact us today.

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT Pulse Newsletter Screen Grab from March 2023

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

05/31/2023

Driving Automotive Innovation with Additive - Webinar

05/24/2023

Hill Air Force Base Tech Expo

05/24/2023

Structural Updates in Ansys 2023 R1 (3) – Structural Optimization & Ex

05/23/2023

CROSSTALK 2023: Emerging Opportunities for Advanced Manufacturing Smal

05/10/2023

Signal & Power Integrity Updates in Ansys 2023 R1 - Webinar

04/26/2023

Additive Manufacturing Updates in Ansys 2023 R1 - Webinar

04/20/2023

38th Space Symposium Arizona Space Industry

More Info

04/19/2023

38th Space Symposium
Arizona Space Industry

04/19/2023

Additive Aids for Manufacturing - Webinar

04/18/2023

38th Space Symposium
Arizona Space Industry

04/17/2023

38th Space Symposium

04/13/2023

Venture Madness 2023

04/12/2023

Fluid Meshing & GPU-Solver Updates in Ansys 2023 R1 - Webinar

03/29/2023

8th Thermal and Fluids Engineering Conference

03/29/2023

Structural Updates in Ansys 2023 R1 - Composites, Fracture & MAPDL

03/28/2023

8th Thermal and Fluids Engineering Conference

03/27/2023

8th Thermal and Fluids Engineering Conference

03/26/2023

8TH Thermal and Fluids Engineering Conference

03/24/2023

Arizona BioPreneur Conference | Spring 2023

03/22/2023

2023 Arizona MedTech Conference

03/22/2023

Optimize Jigs & Fixtures with Additive - Webinar

03/15/2023

3D Design Updates in Ansys 2023 R1 - Webinar

03/08/2023

Competitive Advantages of 1D/3D Coupled Simulation - Webinar

03/01/2023

High Frequency Updates in Ansys 2023 R1 - Webinar

02/22/2023

Additive Advantages in Aerospace - Webinar

02/15/2023

Structural Updates in Ansys 2023 R1 (1) - Webinar

02/09/2023

IME 2023: MD&M | WestPack | ATX | D&M | Plastek

02/08/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

02/07/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

01/27/2023

Arizona Photonics Days, 2023

01/26/2023

Arizona Photonics Days, 2023

01/26/2023

TIPE 3D Printing | 2023

01/26/2023

Venture Cafe Phoenix Talent Night - Job Fari

01/26/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/25/2023

Arizona Photonics Days, 2023

01/25/2023

Building A.M.- Utah: Kickoff!

01/25/2023

TIPE 3D Printing | 2023

01/25/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

TIPE 3D Printing | 2023

01/18/2023

2023 AZ Tech Council Golf Tournament

12/21/2022

Simulation Best Practices for 5G Technology - Webinar

12/14/2022

Digital Twins Updates in Ansys 2022 R2 - Webinar

12/08/2022

Tech the Halls - AZ Tech Council Holiday Mixer

12/07/2022

Electric Vehicle and Other Infrastructure Update Panel

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

10/17/2022

Experience Stratasys Truck Tour - Clearfield Utah

10/14/2022

ASU School of Manufacturing Systems and Networks - Formal Opening Cele

10/14/2022

Experience Stratasys Truck Tour - Midvale Utah

10/12/2022

Experience Stratasys Truck Tour - Littleton Colorado

10/06/2022

Fluids Updates in Ansys 2022 R2 - Webinar

10/05/2022

Experience Stratasys Truck Tour - Colorado Springs

09/29/2022

White Hat Life Science Investor Conference - 2022

09/28/2022

2022 AZBio Awards

09/28/2022

Simulation Best Practices for Rotating Machinery Design & Development

09/21/2022

ExperienceIT NM 2022

09/21/2022

Additive Updates in Ansys 2022 R2 - Webinar

09/14/2022

Rocky Mountain Life Sciences Investor & Partnering Conference

09/08/2022

Ansys Optics Simulation User Group Meeting - Virtual

09/08/2022

Ansys Optics Simulation User Group Meeting

09/07/2022

SI & PI Updates in Ansys 2022 R2 - Webinar

08/31/2022

Simulation Best Practices for Developing Medical Devices - Webinar

08/24/2022

Mechanical Updates in Ansys 2022 R2 - Webinar

08/10/2022

Tucson after5 Tech Mixer: Ruda-Cardinal

08/05/2022

Flagstaff Tech Tour, 2022

08/02/2022

2022 CEO Leadership Retreat

08/01/2022

2022 CEO Leadership Retreat

07/27/2022

Thermal Integrity Updates in Ansys 2022 R1 - Webinar

07/20/2022

Simulation Best Practices for the Pharmaceutical Industry - Webinar

07/14/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

Additive & Structural Optimization Updates in Ansys 2022 R1 - Webinar

07/07/2022

Arizona AADM Conference, 2022

06/29/2022

LS-DYNA Updates & Advancements in Ansys 2022 R1 - Webinar

06/23/2022

Simulation Best Practices for Wind Turbine Design - Webinar

06/15/2022

MAPDL Updates & Advancements in Ansys 2022 R1 - Webinar

06/01/2022

Mechanical Updates in Ansys 2022 R1 - pt. 2 Webinar

05/26/2022

Modelling liquid cryogenic rocket engines in Flownex - Webinar

05/25/2022

SMR & Advanced Reactor 2022

05/25/2022

05/24/2022

SMR & Advanced Reactor 2022

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: