3D Printing Infill Styles – the What, When and Why of Using Infill

Have you ever wondered about choosing a plain versus funky infill-style for filament 3D-printing? Amongst the ten standard types (no, the cat infill design is not one of them), some give you high strength, some greatly decrease material use or printing time, and others are purposely tailored with an end-use in mind.

IMG 2500

Highly detailed Insight slicing software from Stratasys gives you the widest range of possibilities; the basic versions are also accessible from GrabCAD Print, the direct-CAD-import, cloud-connected slicing software that offers an easy approach for all levels of 3D print users.

A part that is mimicking or replacing a metal design would do best when built with Solid infill to give it weight and heft, while a visual-concept model printed as five different test-versions may work fine with a Sparse infill, saving time and material. Here at PADT we printed a number of sample cubes with open ends to demonstrate a variety of the choices in action. Check out these hints for evaluating each one, and see the chart at the end comparing build-time, weight and consumed material.

image 2 6
Infill choices for 3D printed parts, offered with Stratasys’ GrabCAD Print software. (Image courtesy PADT Inc.)

Basic Infill Patterns

Solid (also called Alternating Raster) This is the default pattern, where each layer has straight fill-lines touching each other, and the layer direction alternates by 90 degrees. This infill uses the most material but offers the highest density; use it when structural integrity and super-low porosity are most important.

Alternating Raster Solid Back

Solid (Alternating Raster)

Sparse Raster lines for Sparse infill also run in one direction per layer, alternating by layer, but are widely spaced (the default spacing is 0.080 inches/2 mm). In Insight, or using the Advanced FDM settings in GrabCAD, you can change the width of both the lines and the spaces.

Sparse Double Dense As you can imagine, Sparse Double Dense achieves twice the density of regular Sparse: it deposits in two directions per layer, creating an open grid-pattern that stacks up throughout the part.

Sparse High Density Just to give you one more quick-click option, this pattern effectively sits between Sparse Double Dense and Solid. It lays rasters in a single direction per layer, but not as closely spaced as for Solid.

Hexagram The effect of this pattern looks similar to a honeycomb but it’s formed differently. Each layer gets three sets of raster lines crossing at different angles, forming perfectly aligned columns of hexagons and triangles. Hexagram is time-efficient to build, lightweight and strong in all directions.

Hexagram 3 Crossed Rasters Back
Hexagram
image 3 4
Additional infill styles and the options for customizing them within a part, offered within Stratasys Insight 3D printing slicing and set-up software. (Image courtesy PADT Inc.)

Advanced Infill Patterns (via Custom Groups in Insight)

Hexagon By laying down rows of zig-zag lines that alternately bond to each other and bend away, Hexagon produces a classic honeycomb structure (every two rows creates one row of honeycomb). The pattern repeats layer by layer so all vertical channels line up perfectly. The amount of build material used is just about one-third that of Solid but strength is quite good.

Hexagon Honeycomb Back
Hexagon

Permeable Triangle A layer-by-layer shifting pattern of triangles and straight lines creates a strong infill that builds as quickly as Sparse, but is extremely permeable. It is used for printing sacrificial tooling material (i.e., Stratsys ST130) that will be wrapped with composite material and later dissolved away.

Permeable Triangle Back
Permeable Triangle

Permeable Tubular This infill is formed by a 16-layer repeating pattern deposited first as eight varying wavy layers aligned to the X axis and then the same eight layers aligned to the Y axis. The resulting structure is a series of vertical cylinders enhanced with strong cross-bars, creating air-flow channels highly suited to tooling used on vacuum work-holding tables.

Permeable Tubular Back
Permeable Tubular 0.2 Spacing
IMG 2474
Permeable Tubular 0.5 Spacing

Gyroid (so cool we printed it twice) The Gyroid pattern belongs to a class of mathematically minimal surfaces, providing infill strength similar to that of a hexagon, but using less material. Since different raster spacings have quite an effect, we printed it first with the default spacing of 0.2 inches and then widened that to 0.5 inches. Print time and material use dropped dramatically.

Gyroid 0.2 Spacing Back
Gyroid 0.2 Spacing
Gyroid 0.5 Spacing Back
Gyroid 0.5 Spacing

Schwarz D (Diamond) This alternate style of minimal surface builds in sets of seven different layers along the X-axis, ranging from straight lines to near-sawtooth waves, then flipping to repeat the same seven layers along the Y-axis. The Schwarz D infill balances strength, density and porosity. As with the Gyroid, differences in raster spacing have a big influence on the material use and build-time.

Schwarz Diamond 0.2 Back
Schwarz Diamond 0.2 Spacing
Schwarz Diamond 0.5 Back
Schwarz Diamond 0.5 Spacing

Digging Deeper Into Infill Options

Infill Cell Type/0.2 spacing Build Time Weight Material Used
Alternating Raster (Solid) 1 h 57 min 123.77 g 6.29 cu in.
Sparse Double Dense 1 hr 37 min 44.09 g 4.52 cu in.
Hexagon (Honeycomb) 1 h 49 min 37.79 g 2.56 cu in.
Hexagram (3 crossed rasters) 1 h 11 min. 47.61 g 3.03 cu in.
Permeable Triangle 1 h 11 min. 47.67 g 3.04 cu in.
Permeable Tubular – small 2 h 5 min. 43.95 g 2.68 cu in.
Gyroid – small 1 h 48 min. 38.68 g 2.39 cu in.
Schwarz Diamond (D) – small 1 h 35 min. 47.8 g 3.04 cu in.
Infill Cell Type/0.5 spacing Build Time Weight Material Used
Permeable Tubular – Large 1 h 11 min. 21.84 g 1.33 cu in.
Gyroid – Large 57 min. 20.59 g 1.29 cu in.
Schwarz Diamond (D) – Large 58 min. 23.74 g 1.51 cu in.

Hopefully this information helps you perfect your design for optimal strength or minimal material-use or fastest printing. If you’re still not sure which way to go, contact our PADT Manufacturing group: get your questions answered, have some sample parts printed and discover what infill works best for the job at hand.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

11/15/2023

2023 Governor’s Celebration of Innovation Awards

11/15/2023

Twin Builder Updates in Ansys 2023 R2 - Webinar

11/01/2023

Webinar: Additive's Role in Factory 4.0

10/25/2023

Ansys LevelUp 2023

10/25/2023

Nerdtoberfest 2023

10/25/2023

Mechanical Updates in Ansys 2023 R2 (3) - Webinar

10/18/2023

2023 Southern Arizona Tech + Business Expo

10/18/2023

Fluent GPU Solver Updates in Ansys 2023 R2 - Webinar

10/09/2023

Structural Updates in Ansys 2023 R2 (2) - Webinar

10/02/2023

Colorado Life Sciences Innovation Forum 2023

09/27/2023

2023 AZ Bio Awards

09/26/2023

Experience Stratasys Truck Tour - Houston

09/22/2023

AIAA Rocky Mountain Section Technical Symposium 2023

09/22/2023

Experience Stratasys Truck Tour - Dallas, TX

09/21/2023

Accelerating the Energy Transition through Simulation

09/20/2023

3D Printing vs. CNC Machining - Webinar

09/13/2023

Maxwell Updates in Ansys 2023 R2 - Webinar

09/12/2023

Sandia Science & Technology Park 25th Anniversary

09/12/2023

Experience Stratasys Truck Tour - Tempe, AZ

09/08/2023

26th Annual New Mexico Flying 40 Awards

09/08/2023

New Mexico Tech Summit

09/07/2023

New Mexico Tech Summit

08/30/2023

Structures Updates in Ansys 2023 R2 (1) - Mechanical, Post & Graphics

08/23/2023

Improved Injection Molding with Additive - Webinar

08/22/2023

SPIE Optics & Photonics Exhibition 2023

08/16/2023

Fluids Updates in Ansys 2023 R2 - Webinar

08/04/2023

Experience Stratasys Truck Tour - Salt Lake City, Utah

08/01/2023

Experience Stratasys Truck Tour - Denver Colorado

07/26/2023

Solving Supply Chain Issues with Additive - Webinar

07/25/2023

Arizona Tech Leadership Golf Tournament

07/24/2023

Arizona Tech CEO Leadership Retreat

07/19/2023

System Automation & Optimization Updates in Ansys 2023 R1 - Webinar

07/13/2023

2023 AEROSPACE, AVIATION, DEFENSE AND MANUFACTURING CONFERENCE

07/12/2023

Materials Updates in Ansys Granta 2023 R1 - Webinar

06/30/2023

Turbo Expo 2023

06/29/2023

Turbo Expo 2023

06/28/2023

Turbo Expo 2023

06/28/2023

Revolutionize Packaging Design with Additive - Webinar

06/27/2023

Turbo Expo 2023

06/27/2023

2023 E-MOBILITY AND CLEAN ENERGY SUMMIT

06/26/2023

Turbo Expo 2023

06/21/2023

Optics Updates in Ansys 2023 R1 - Webinar

06/07/2023

LS-DYNA Updates in Ansys 2023 R1 - Webinar

05/31/2023

Driving Automotive Innovation with Additive - Webinar

05/24/2023

Hill Air Force Base Tech Expo

05/24/2023

Structural Updates in Ansys 2023 R1 (3) – Structural Optimization & Ex

05/23/2023

CROSSTALK 2023: Emerging Opportunities for Advanced Manufacturing Smal

05/10/2023

Signal & Power Integrity Updates in Ansys 2023 R1 - Webinar

04/26/2023

Additive Manufacturing Updates in Ansys 2023 R1 - Webinar

04/20/2023

38th Space Symposium Arizona Space Industry

More Info

04/19/2023

38th Space Symposium
Arizona Space Industry

04/19/2023

Additive Aids for Manufacturing - Webinar

04/18/2023

38th Space Symposium
Arizona Space Industry

04/17/2023

38th Space Symposium

04/13/2023

Venture Madness 2023

04/12/2023

Fluid Meshing & GPU-Solver Updates in Ansys 2023 R1 - Webinar

03/29/2023

8th Thermal and Fluids Engineering Conference

03/29/2023

Structural Updates in Ansys 2023 R1 - Composites, Fracture & MAPDL

03/28/2023

8th Thermal and Fluids Engineering Conference

03/27/2023

8th Thermal and Fluids Engineering Conference

03/26/2023

8TH Thermal and Fluids Engineering Conference

03/24/2023

Arizona BioPreneur Conference | Spring 2023

03/22/2023

2023 Arizona MedTech Conference

03/22/2023

Optimize Jigs & Fixtures with Additive - Webinar

03/15/2023

3D Design Updates in Ansys 2023 R1 - Webinar

03/08/2023

Competitive Advantages of 1D/3D Coupled Simulation - Webinar

03/01/2023

High Frequency Updates in Ansys 2023 R1 - Webinar

02/22/2023

Additive Advantages in Aerospace - Webinar

02/15/2023

Structural Updates in Ansys 2023 R1 (1) - Webinar

02/09/2023

IME 2023: MD&M | WestPack | ATX | D&M | Plastek

02/08/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

02/07/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

01/27/2023

Arizona Photonics Days, 2023

01/26/2023

Arizona Photonics Days, 2023

01/26/2023

TIPE 3D Printing | 2023

01/26/2023

Venture Cafe Phoenix Talent Night - Job Fari

01/26/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/25/2023

Arizona Photonics Days, 2023

01/25/2023

Building A.M.- Utah: Kickoff!

01/25/2023

TIPE 3D Printing | 2023

01/25/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

TIPE 3D Printing | 2023

01/18/2023

2023 AZ Tech Council Golf Tournament

12/21/2022

Simulation Best Practices for 5G Technology - Webinar

12/14/2022

Digital Twins Updates in Ansys 2022 R2 - Webinar

12/08/2022

Tech the Halls - AZ Tech Council Holiday Mixer

12/07/2022

Electric Vehicle and Other Infrastructure Update Panel

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: