3D Printing Polymer Parts with Electrostatic Dissipative (ESD) Properties

Getting zapped by static electricity at the personal level is merely annoying; having your sensitive electronic equipment buzzed is another, highly destructive story.

Much as you’d like to send these components out into the world wearing their own little anti-static wristbands, that’s just not practical (and actually, not good enough*). During build and use, advanced electronics applications need true charge-dissipative protection that is inherent to their design and easy to achieve. However, the typical steps of painting or coating, covering with conductive tape, or wrapping with carbon-filled/aluminum-coated films incur both time and cost.

Electrostatic dissipative (ESD) polymer materials instead provide this kind of protection on a built-in basis, offering a moderately conductive “exit path” that naturally dissipates the charge build-up that can occur during normal operations. It also prevents powders, dust or fine particles from sticking to the surface. Whether the task is protecting circuit boards during transport and testing, or ensuring that the final product works as designed throughout its lifetime, ESD materials present low electrical resistance while offering the required mechanical, and often thermal and/or chemically-resistant properties.

image 31
ESD-safe fixture for testing a printed-circuit board, produced by 3D printing with Stratasys ABS-ESD7 material. (Image courtesy of Stratasys)

Combining ESD Behavior with 3D Printing

All the features that are appealing with 3D printing carry over when printing with ESD-enabled thermoplastics. You can print trays custom-configured to hold circuit-boards for in-process testing, print conformal fixtures that speed up sorting, and produce end-use structures for projects where static build-up is simply not allowed (think mission-critical aerospace applications).

Acrylonitrile butadiene styrene (ABS), that work-horse of the plastics industry, has been available as 3D printing filament for decades. Along the way, Stratasys and other vendors started offering this filament in a version filled with carbon particles that decrease the plastic’s inherent electrical resistance. Stratasys ABS-ESD7 runs on the Fortus 380, 400, 450 and 900 industrial systems, and soon will be available on the office-friendly F370 printer.

What kind of performance does ABS-ESD7 offer? When evaluating materials for ESD performance, the most important property is usually the surface resistance, measured in ohms. (This is not the same as surface resistivity, plus there’s also volume resistivity – see Note at end). Conductive materials – typically metals – have a surface resistance generally less than 103 ohms, insulators such as most plastics are rated at greater than 1012 ohms, and ESD materials fall in the mid-range, at 106 to 109 ohms.

Compared to standard ABS filament, ABS-ESD7 offers more than five orders of magnitude lower resistance, converting it from an insulator to a material that provides an effective static-discharge path to the outside world. Due to the inherent layered structure of FDM parts, the differences in properties between flat (XY) and vertical (ZX) build orientations produces a range of resistance values, with a target of 107 ohms, reflected in the product name of ABS-ESD7. Stratasys offers an excellent, easy-to-read FAQ paper about ABS-ESD7.

image 1 7
Printed-circuit board production tool, custom 3D-printed in Stratasys ABS-ESD7 material for built-in protection from electrostatic discharge during test and handling. (Image courtesy of Stratasys)

When ABS isn’t strong enough or won’t hold up to temperature extremes, engineers can turn to Stratasys’ ESD-enhanced polyetherketoneketone (PEKK), termed Antero 840CN03. Developed in 2016 and slated for full release in October 2019, this new filament expands the company’s Antero line of  high-temperature, chemically resistant formulations. The PEKK base material offers a high glass transition temperature (Tg 149C, compared to 108C for ABS-ESD7) while meeting stringent outgassing and cleanroom requirements. As with ABS-ESD7, the carbon-nanotube loading lowers electrical resistance values of Antero 840CN03 parts to the desirable “ESD safe” range of 106 to 109 ohm.

Setting up Parts for Printing with ESD-Enhanced Filament                                                            

Support structures in contact with part walls/surfaces can disturb the surface resistance behavior. To counter-act this condition for filament printing with any type of ESD material, users should perform a special calibration that makes the printer lay down slightly thinner-than-usual layers of support material. In Stratasys Insight software, this is currently accomplished by setting the Support Offset Thickness to -0.003; this decreases the support layers from 0.010 inches to 0.007 inches. In addition, supports should be removed (in Insight software) from holes that are smaller in diameter than 0.25 inches (6.35mm).

As more of these materials are developed, the software will be updated to automatically create supports with this process in mind.

ESD Applications for 3D Printing

Avionics boxes, fixtures for holding and transporting circuit boards, storage containers for fuel, and production-line conveyor systems are just a few examples of end-use applications of ESD-enabled materials. Coupled with the geometric freedom offered by 3D printing, three categories of manufacturing and operations are improved:

  • Protecting electronics from ESD damage (static shock)
  • Preventing fire/explosion (static spark)
  • Preserving equipment/product performance (static cling)

If you’re exploring how 3D printing with ESD-enhanced materials can help with your industrial challenge, contact our PADT Manufacturing group: get your questions answered, have some sample parts printed, and discover what filament is right for you.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.

*Anti-static is a qualitative term and refers to something that prevents build-up of static, rather than dissipating what does occur


Surface Resistance, Surface Resistivity and Volume Resistivity

Surface resistance in ohms is a measurement to evaluate static-dissipative packaging materials.

Surface resistivity in ohms/square is used to evaluate insulative materials where high resistance characteristics are desirable. (Ref. https://www.evaluationengineering.com/home/article/13000514/the-difference-between-surface-resistance-and-surface-resistivity)

The standard for measuring surface resistance of ESD materials is EOS/ESD S11.11, released in 1993 by the ESD Association as an improvement over ASTM D-257 (the classic standard for evaluating insulators). Driving this need was the non-homogeneous structure of ESD materials (conductive material added to plastic), which had a different effect on testing parameters such as voltage or humidity,  than found with evaluating conductors.

Volume resistivity is yet a third possible measured electrical property, though again better suited for true conductors rather than ESD material. It depends on the area of the ohmeter’s electrodes and the thickness of the material sample. Units are ohm-cm or ohm-m.

             

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT Pulse Newsletter Screen Grab from March 2023

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

05/31/2023

Driving Automotive Innovation with Additive - Webinar

05/24/2023

Hill Air Force Base Tech Expo

05/24/2023

Structural Updates in Ansys 2023 R1 (3) – Structural Optimization & Ex

05/23/2023

CROSSTALK 2023: Emerging Opportunities for Advanced Manufacturing Smal

05/10/2023

Signal & Power Integrity Updates in Ansys 2023 R1 - Webinar

04/26/2023

Additive Manufacturing Updates in Ansys 2023 R1 - Webinar

04/20/2023

38th Space Symposium Arizona Space Industry

More Info

04/19/2023

38th Space Symposium
Arizona Space Industry

04/19/2023

Additive Aids for Manufacturing - Webinar

04/18/2023

38th Space Symposium
Arizona Space Industry

04/17/2023

38th Space Symposium

04/13/2023

Venture Madness 2023

04/12/2023

Fluid Meshing & GPU-Solver Updates in Ansys 2023 R1 - Webinar

03/29/2023

8th Thermal and Fluids Engineering Conference

03/29/2023

Structural Updates in Ansys 2023 R1 - Composites, Fracture & MAPDL

03/28/2023

8th Thermal and Fluids Engineering Conference

03/27/2023

8th Thermal and Fluids Engineering Conference

03/26/2023

8TH Thermal and Fluids Engineering Conference

03/24/2023

Arizona BioPreneur Conference | Spring 2023

03/22/2023

2023 Arizona MedTech Conference

03/22/2023

Optimize Jigs & Fixtures with Additive - Webinar

03/15/2023

3D Design Updates in Ansys 2023 R1 - Webinar

03/08/2023

Competitive Advantages of 1D/3D Coupled Simulation - Webinar

03/01/2023

High Frequency Updates in Ansys 2023 R1 - Webinar

02/22/2023

Additive Advantages in Aerospace - Webinar

02/15/2023

Structural Updates in Ansys 2023 R1 (1) - Webinar

02/09/2023

IME 2023: MD&M | WestPack | ATX | D&M | Plastek

02/08/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

02/07/2023

IME 2023 MD&M | WestPack | ATX | D&M | Plastek

01/27/2023

Arizona Photonics Days, 2023

01/26/2023

Arizona Photonics Days, 2023

01/26/2023

TIPE 3D Printing | 2023

01/26/2023

Venture Cafe Phoenix Talent Night - Job Fari

01/26/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/25/2023

Arizona Photonics Days, 2023

01/25/2023

Building A.M.- Utah: Kickoff!

01/25/2023

TIPE 3D Printing | 2023

01/25/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

VFS 2023 Autonomous/Electric VTOL Symposium

01/24/2023

TIPE 3D Printing | 2023

01/18/2023

2023 AZ Tech Council Golf Tournament

12/21/2022

Simulation Best Practices for 5G Technology - Webinar

12/14/2022

Digital Twins Updates in Ansys 2022 R2 - Webinar

12/08/2022

Tech the Halls - AZ Tech Council Holiday Mixer

12/07/2022

Electric Vehicle and Other Infrastructure Update Panel

11/30/2022

SPEOS Updates in Ansys 2022 R2 - Webinar

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

10/17/2022

Experience Stratasys Truck Tour - Clearfield Utah

10/14/2022

ASU School of Manufacturing Systems and Networks - Formal Opening Cele

10/14/2022

Experience Stratasys Truck Tour - Midvale Utah

10/12/2022

Experience Stratasys Truck Tour - Littleton Colorado

10/06/2022

Fluids Updates in Ansys 2022 R2 - Webinar

10/05/2022

Experience Stratasys Truck Tour - Colorado Springs

09/29/2022

White Hat Life Science Investor Conference - 2022

09/28/2022

2022 AZBio Awards

09/28/2022

Simulation Best Practices for Rotating Machinery Design & Development

09/21/2022

ExperienceIT NM 2022

09/21/2022

Additive Updates in Ansys 2022 R2 - Webinar

09/14/2022

Rocky Mountain Life Sciences Investor & Partnering Conference

09/08/2022

Ansys Optics Simulation User Group Meeting - Virtual

09/08/2022

Ansys Optics Simulation User Group Meeting

09/07/2022

SI & PI Updates in Ansys 2022 R2 - Webinar

08/31/2022

Simulation Best Practices for Developing Medical Devices - Webinar

08/24/2022

Mechanical Updates in Ansys 2022 R2 - Webinar

08/10/2022

Tucson after5 Tech Mixer: Ruda-Cardinal

08/05/2022

Flagstaff Tech Tour, 2022

08/02/2022

2022 CEO Leadership Retreat

08/01/2022

2022 CEO Leadership Retreat

07/27/2022

Thermal Integrity Updates in Ansys 2022 R1 - Webinar

07/20/2022

Simulation Best Practices for the Pharmaceutical Industry - Webinar

07/14/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

Additive & Structural Optimization Updates in Ansys 2022 R1 - Webinar

07/07/2022

Arizona AADM Conference, 2022

06/29/2022

LS-DYNA Updates & Advancements in Ansys 2022 R1 - Webinar

06/23/2022

Simulation Best Practices for Wind Turbine Design - Webinar

06/15/2022

MAPDL Updates & Advancements in Ansys 2022 R1 - Webinar

06/01/2022

Mechanical Updates in Ansys 2022 R1 - pt. 2 Webinar

05/26/2022

Modelling liquid cryogenic rocket engines in Flownex - Webinar

05/25/2022

SMR & Advanced Reactor 2022

05/25/2022

05/24/2022

SMR & Advanced Reactor 2022

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: