Custom Result Layers in Flownex!

Categories:

Friday Flownex Tech Tips #5

The result layers in Flownex have evolved quite a bit over the last few iterations of the code. Although we might typically associate color-gradient results more with 3D CFD, it does have a place in 1D system modeling. Taking advantage of results layers in Flownex can give a very quick understanding of what is going on with our system, and, with a little customization, can be incredibly powerful as an addition to our design and analysis toolbelt. In this post I am using Flownex version 8.12.7.4334.

How to create a result layer

To create a custom result layer we must navigate to the results ribbon and select result layer setup.

result layer setup

First we want to right-click in the Result Layers window and add a new result layer.

new result layer 1

There are two options to add the schema for our result layer. The first is to right-click on the Selected Result Layer Schemas and add either a specific or generic schema. The second, and my PREFERRED, method is to simply drag and drop results from components on the canvas into this window:

adding generic schema

Note that I want to multi-select any component types which will be included in this result layer. This could be any flow components which share a common result such as “quality”. I also convert to generic because I want the result layer to apply to all pipes, not just the pipe I initially drag and drop the property from.

Defining the custom result layer

In this example I have a two-phase water network with a cold external temperature. I want to create a result layer to quickly see if the water is in the gas phase, liquid phase, or somewhere in-between. The problem I have been tasked with solving is ensuring that the water never condenses. I will need to determine where we may need to add additional heat flux to the network.

We can use the Quality result property to determine the phase of our fluid. Quality < 0 indicates fully liquid, quality between 0 and 1 indicates liquid/gas mixture, greater than 1 indicates fully vapor.

To make this work as intended I can set up a gradient with three increments going from -1 to 2. The idea being the lowest increment would encompass -1 to 0, middle increment would be 0 to 1, and the top increment would be 1 to 2. For the gradient mode I made sure to pick <-[MinValue, MaxValue]-> so that the max and min increments would extend past the specified range.

result layer gradient setup

As we apply this to our network we can easily see that we do, in fact, have a phase change from gas at the inlet, to mixture in the second two component, to fully liquid near the outlet.

result layer canvas

I may decide to add a heater to our outlet pipe and perhaps a thicker insulative layer to all three to attempt to keep the water in gas phase throughout the system.

Result demo

Bonus Tip!

  • Result layers can also be super handy when troubleshooting to quickly identify large pressure differentials, choking points, or other outlying fluid properties.
Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

05/07/2024

Experience Stratasys Truck Tour: Albuquerque, NM

05/07/2024

Dynamic Simulation for Rocket Propellant Systems! - Webinar

05/08/2024

Fluent Materials Processing Updates in Ansys 2024 R1 - Webinar

05/13/2024

Experience Stratasys Truck Tour: Tempe, AZ

05/14/2024

Simulation World 2024

05/15/2024

Simulation World 2024

05/16/2024

Simulation World 2024

05/22/2024

Optics Updates in Ansys 2024 R1 - Webinar

06/12/2024

Connect Updates in Ansys 2024 R1 - Webinar

06/26/2024

Structures Updates in Ansys 2024 R1 (3) - Webinar

06/27/2024

E-Mobility and Clean Energy Summit

07/10/2024

Fluids Updates in Ansys 2024 R1 - Webinar

08/05/2024

2024 CEO Leadership Retreat

10/23/2024

PADT30 | Nerdtoberfest 2024

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: