Custom Result Layers in Flownex!

Categories:

Friday Flownex Tech Tips #5

The result layers in Flownex have evolved quite a bit over the last few iterations of the code. Although we might typically associate color-gradient results more with 3D CFD, it does have a place in 1D system modeling. Taking advantage of results layers in Flownex can give a very quick understanding of what is going on with our system, and, with a little customization, can be incredibly powerful as an addition to our design and analysis toolbelt. In this post I am using Flownex version 8.12.7.4334.

How to create a result layer

To create a custom result layer we must navigate to the results ribbon and select result layer setup.

result layer setup

First we want to right-click in the Result Layers window and add a new result layer.

new result layer 1

There are two options to add the schema for our result layer. The first is to right-click on the Selected Result Layer Schemas and add either a specific or generic schema. The second, and my PREFERRED, method is to simply drag and drop results from components on the canvas into this window:

adding generic schema

Note that I want to multi-select any component types which will be included in this result layer. This could be any flow components which share a common result such as “quality”. I also convert to generic because I want the result layer to apply to all pipes, not just the pipe I initially drag and drop the property from.

Defining the custom result layer

In this example I have a two-phase water network with a cold external temperature. I want to create a result layer to quickly see if the water is in the gas phase, liquid phase, or somewhere in-between. The problem I have been tasked with solving is ensuring that the water never condenses. I will need to determine where we may need to add additional heat flux to the network.

We can use the Quality result property to determine the phase of our fluid. Quality < 0 indicates fully liquid, quality between 0 and 1 indicates liquid/gas mixture, greater than 1 indicates fully vapor.

To make this work as intended I can set up a gradient with three increments going from -1 to 2. The idea being the lowest increment would encompass -1 to 0, middle increment would be 0 to 1, and the top increment would be 1 to 2. For the gradient mode I made sure to pick <-[MinValue, MaxValue]-> so that the max and min increments would extend past the specified range.

result layer gradient setup

As we apply this to our network we can easily see that we do, in fact, have a phase change from gas at the inlet, to mixture in the second two component, to fully liquid near the outlet.

result layer canvas

I may decide to add a heater to our outlet pipe and perhaps a thicker insulative layer to all three to attempt to keep the water in gas phase throughout the system.

Result demo

Bonus Tip!

  • Result layers can also be super handy when troubleshooting to quickly identify large pressure differentials, choking points, or other outlying fluid properties.

Join PADT and the global Ansys user community for this year’s online conference.

Multiple Tracks | Every Physics & Every Industry

Hear from Ansys Leadership | Presentations from Customers on How They Use Ansys

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

Share this post:

Upcoming Events

May 29
, 2025
Applying Digital Engineering across Space Mission Analysis and Design: Payload - Webinar
Jun 03
, 2025
Experience Stratasys Truck Tour - Denver Colorado
Jun 03
, 2025
Accelerate Electronics Thermal Workflows with Ansys Discovery and Ansys Icepak - Webinar
Jun 03
, 2025
Smart Manufacturing and Operations Enabled by Simulation - Webinar
Jun 04
, 2025
Composites & Structural Optimization Updates in Ansys 2025 R1 - Webinar
Jun 05
, 2025
Using Digital Engineering for a Structural, Thermal, and Optical Performance Workflow - Webinar
Jun 09
- Jun 11
, 2025
TechConnect World 2025
Jun 12
, 2025
Design and Test: Critical Links for Mission Success - Webinar
Jun 17
, 2025
Ansys Virtual Workshop - Fatigue & Durability Workflows with Ansys Mechanical & nCode
Jun 18
, 2025
Fluent CPU - UI & UX Updates in Ansys 2025 R1 - Webinar
Jun 16
- Jun 20
, 2025
Turbo Expo
Jun 24
, 2025
Cardiovascular Digital Twins: From Bench to Bedside - Webinar
Jun 25
, 2025
E-Mobility and Clean Energy Summit
Jul 02
, 2025
Electric Machine & Consumer Electronics Updates in Ansys 2025 R1 - Webinar
Jul 11
, 2025
2025 Aerospace, Aviation, Defense and Manufacturing Conference
Jul 16
, 2025
HFSS Updates in Ansys 2025 R1 - Webinar
Jul 16
- Jul 17
, 2025
Ansys Simulation World 2025
Aug 10
- Aug 13
, 2025
SmallSat 2025

Search the PADT Site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: