ANSYS Discovery Live: A Focus on Topology Optimization

Categories:

For those who are not already familiar with it, Discovery Live is a rapid design tool that shares the Discovery SpaceClaim environment. It is capable of near real-time simulation of basic structural, modal, fluid, electronic, and thermal problems. This is done through leveraging the computational power of a dedicated GPU, though because of the required speed it will necessarily have somewhat less fidelity than the corresponding full Ansys analyses. Even so, the ability to immediately see the effects of modifying, adding, or rearranging geometry through SpaceClaim’s operations provides a tremendous value to designers.

One of the most interesting features within Discovery Live is the ability to perform Topology Optimization for reducing the quantity of material in a design while maintaining optimal stiffness for a designated loading condition. This can be particularly appealing given the rapid adoption of 3D printing and other additive manufacturing techniques where reducing the total material used saves both time and material cost. These also allow the production of complex organic shapes that were not always feasible with more traditional techniques like milling.

With these things in mind, we have recently received requests to demonstrate Discovery Live’s capabilities and provide some training in its use, especially for topology optimization. Given that Discovery Live is amazingly straightforward in its application, this also seems like an ideal topic to expand on in blog form alongside our general Discovery Live workshops!

For this example, we have chosen to work with a generic “engine mount” geometry that was saved in .stp format. The overall dimensions are about 10 cm wide x 5 cm tall x 5 cm deep, and we assume it is made out of stainless steel (though this is not terribly important for this demonstration).

PADT ANSYS Discovery Live Topological Optinization f01

Figure 1: Starting engine mount geometry with fixed supports and a defined load.

The three bolt holes around the perimeter are fixed in position, as if they were firmly clamped to a surface, while a total load of 9069 N (-9000 N in X, 1000 N in Y, and 500 N in Z) is applied to the cylindrical surfaces on the front. From here, we simply tell Discovery Live that we would like to add a topology optimization calculation onto our structural analysis. This opens up the ability to specify a couple more options: the way we define how much material to remove and the amount of material around boundary conditions to preserve. For removing material, we can choose to either reduce the total volume by a percent of the original or to remove material until we reach a specific model volume. For the area around boundary conditions, this is an “inflation” length measured as a normal distance from these surfaces, easily visualizable when highlighting the condition on the solution tree.

PADT ANSYS Discovery Live Topological Optinization f02

Figure 2: Inflation zone shown around each fixed support and load surface.

Since I have already planned out what kind of comparisons I want to make in this analysis, I chose to set the final model volume to 30 cm3. After hitting the simulate button, we get to watch the optimization happen alongside a rough structural analysis. By default, we are provided with a result chart showing the model’s volume, which pretty quickly converges on our target volume. As with any analysis, the duration of this process is fairly sensitive to the fidelity specified, but with default settings this took all of 7 minutes and 50 seconds to complete on my desktop with a Quadro K4000.

PADT ANSYS Discovery Live Topological Optinization f03a
PADT ANSYS Discovery Live Topological Optinization f03b

Figure 3: Mid-optimization on the top, post-optimization on the bottom.

Once optimization is complete, there are several more operations that become available. In order to gain access to the optimized structure, we need to convert it into a model body. Both options for this result in faceted bodies with the click of a button located in the solution tree; the difference is just that the second has also had a smoothing operation applied to it. One or the other may be preferable, depending on your application.

PADT ANSYS Discovery Live Topological Optinization f04

Figure 4: Converting results to faceted geometry

Text Box: Figure 5: Faceted body post-optimization.

Figure 5: Faceted body post-optimization

PADT ANSYS Discovery Live Topological Optinization f06

Figure 6: Smoothed faceted body post-optimization

Though some rough stress calculations were made throughout the optimization process, the next step is typically a validation. Discovery Live makes this as a simple procedure as right-clicking on the optimized result in the solution tree and selecting the “Create Validation Solution” button. This essentially copies over the newly generated geometry into a new structural analysis while preserving the previously applied supports and loads. This allows for finer control over the fidelity of our validation, but still a very fast confirmation of our results. Using maximum fidelity on our faceted body, we find that the resulting maximum stress is about 360 MPa as compared to our unoptimized structure’s stress of 267 MPa, though of course our new material volume is less than half the original.

PADT ANSYS Discovery Live Topological Optinization f07

Figure 7: Optimized structure validation. Example surfaces that are untouched by optimization are boxed.

It may be that our final stress value is higher than what we find acceptable. At this point, it is important to note one of the limitations in version 2019R3: Discovery Live can only remove material from the original geometry, it does not add. What this means is that any surfaces remaining unchanged throughout the process are important in maintaining structural integrity for the specified load. So, if we really want to optimize our structure, we should start with additional material in these regions to allow for more optimization flexibility.

In this case, we can go back to our original engine mount model in Discovery Live and use the integrated SpaceClaim tools to thicken our backplate and expand the fillets around the load surfaces.

PADT ANSYS Discovery Live Topological Optinization f08

Figure 8: Modified engine mount geometry with a thicker backplate and larger fillets.

We can then run back through the same analysis, specifying the same target volume, to improve the performance of our final component. Indeed, we find that after optimizing back down to a material volume of 30 cm3, our new maximum stress has been decreased to 256 MPa. Keep in mind that this is very doable within Discovery Live, as the entire modification and simulation process can be done in <10 minutes for this model.

PADT ANSYS Discovery Live Topological Optinization f09

Figure 9: Validated results from the modified geometry post-optimization.

Of course, once a promising solution has been attained in Discovery Live, we should then export the model to run a more thorough analysis of in Ansys Mechanical, but hopefully, this provides a useful example of how to leverage this amazing tool!

One final comment is that while this example was performed in the 2019R3 version, 2020R1 has expanded Discovery Live’s optimization capability somewhat. Instead of only being allowed to specify a target volume or percent reduction, you can choose to allow a specified increase in structure compliance while minimizing the volume. In addition to this, there are a couple more knobs to turn for better control over the manufacturability of the result, such as specifying the maximum thickness of any region and preventing any internal overhangs in a specified direction. It is now also possible to link topology optimization to a general-purpose modal analysis, either on its own or coupled to a structural analysis. These continued improvements are great news for users, and we hope that even more features continue to roll out.

Categories

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Technical Expertise to Enable your Additive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: . You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Upcoming Events

03/27/2024

High Frequency Updates in Ansys 2024 R1 - Webinar

03/27/2024

2024 Arizona Space Summit

03/28/2024

SAF Blue Carpet Event

03/28/2024

2024 Arizona Space Summit

04/03/2024

Low Frequency Updates in Ansys 2024 R1 - Webinar

04/03/2024

Venture Madness Conference Reception + Expo

04/08/2024

39th Space Symposium

04/09/2024

39th Space Symposium

04/10/2024

Discovery Updates in Ansys 2024 R1 - Webinar

04/10/2024

39th Space Symposium

04/11/2024

39th Space Symposium

04/24/2024

Structures Updates in Ansys 2024 R1 (2)

05/08/2024

Fluent Materials Processing Updates in Ansys 2024 R1 - Webinar

05/22/2024

Optics Updates in Ansys 2024 R1 - Webinar

06/12/2024

Connect Updates in Ansys 2024 R1 - Webinar

06/26/2024

Structures Updates in Ansys 2024 R1 (3) - Webinar

06/27/2024

E-Mobility and Clean Energy Summit

07/10/2024

Fluids Updates in Ansys 2024 R1 - Webinar

08/05/2024

2024 CEO Leadership Retreat

10/23/2024

PADT30 | Nerdtoberfest 2024

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: