Don’t compromise your composite tooling design – Streamline your Sacrificial tooling with FDM

FDM Sacrificial Tooling: Using Additive Manufacturing for Sacrificial Composite Tool Production

Additive manufacturing has seen an explosion of material options in recent years. With these new material options comes significant improvements in mechanical properties and the potential for new applications that extend well beyond prototyping; one such application being sacrificial tooling.

Traditional composite manufacturing techniques work well to produce basic shapes with constant cross sections. However, complex composite parts with hollow interiors present unique manufacturing challenges. However, with FDM sacrificial tooling, no design compromise is necessary.

Download the white paper to discover how FDM sacrificial tooling can dramatically streamline the production process for complicated composite parts with hollow interiors.

This document includes insight into:

  • Building for optimal results
  • Consolidating composites
  • Finding application best fits

Design, Simulate, Print: ANSYS Offerings in Additive Manufacturing – Webinar

Don’t miss this informative presentation – Secure your spot today!

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

Pictures and Impressions from the 2018 Colorado Additive Manufacturing Day

Someone in the business of giving advice on social situation once said that you need four ingredients for an event to be a success: great conversation with the right people at the right location with the right food and beverage.  All of that came together last week in Littleton Colorado for PADT’s third annual Colorado Additive Manufacturing Data. The weather cooperated and we were able to gather under a tent at the St Patrick’s Brewing Company right on the Platte River to spend the afternoon talking about 3D Printing.

PADT’s very own Norm Stucker hosted, kicking off the event with a welcome from Littleton’s Mayor, Debbie Brinkman.  This was followed by presentations:

  • PADT’s Co-Owner Rey Chu shared his thoughts on being successful with AM
  • Scott Sevcik, VP of Manufacturing Solutions at Stratasys went over the Stratasys Product Roadmap
  • I gave a high-level overview on Design for Additive Manufacturing
  • The ANSYS Additive Manufacturing simulation tools were reviewed by PADT engineer Doug Oatis

After a break, that involved getting more pints of beer, eating an amazingly large amount of pizza, and networking; we returned to the tent for our keynote addresses and a panel.

The first Keynote was from William Carver of Sierra Nevada Corporation (SNC) on how they are using AM for their Dream Chaser spacecraft.  This was followed by Ryan Bocook taking a look at Boom Supersonic‘s use of the technology for the development of their brand new supersonic airplane. For many of us, seeing how these two companies make 3D Printing a part of their design, test, and manufacturing processes was very informative. It was real world, real issues, and real solutions.

The day was capped by a fascinating panel on that very topic: Making Additive Manufacturing Real.  The speakers consisted of:

The panel was moderated by Maj. General Jay Lindell (USAF, Ret) who serves as the Aerospace and Defense Industry Champion for the Colorado Office of Economic Development and International Trade.  Not only does he have the longest and coolest title, he did a great job of getting the panel to share their experiences to the benefit of all who were there.

For me, the best part (the Dark Lager does not count) of the event was the interaction between users across industries.  So many great examples and stories.  Bad nerd jokes were told, advice was shared, stories about challenges were told, and business cards were exchanged. We live in an online world and you can have some community through the internet. But to build great relationships and to truly share knowledge, you need to get everyone together under a huge tent on a sunny day at a brewery by a river.

If you want to take part in our next Colorado Additive Manufacturing day, a 3D Printing user event in Arizona, Utah, or New Mexico, any of our online webinars, or any other PADT event make sure you sign up for the PADT Additive & Advanced Manufacturing Email List or the PADT General Information Email List on our OptIn page. If you have any questions about any of the content or 3D Printing in general, do not hesitate to contact us.

Please enjoy the pictures we captured of the day below and we hope to see you at our next event.

 

This slideshow requires JavaScript.

Best practices for composite tooling with additive manufacturing

Additively Manufactured: Best Practices for Composite Tooling with 3D Printing

The advanced composites industry has a continual need for innovative tooling solutions. Conventional tooling is typically heavy, costly and time-consuming to produce. New applications, product improvements and the demand for faster, lower-cost tool creation challenge composite product manufacturers to innovate and remain competitive.

The use of additive manufacturing (or “3D printing”), and specifically FDM, for composite tooling has demonstrated considerable cost and lead time reductions while providing numerous other advantages such as immense design freedom and rapid iteration, nearly regardless of part complexity.

Download the white paper to learn more about the various advantages and capabilities of composite tooling with additive over traditional manufacturing methods, and discover the best practices for ensuring that your composite tooling process is efficient as possible.

This document includes best practices for:

  • Testing and characterization
  • Tool Design, Production, & Use
  • Analyzing results

Press Release: NASA Awards a $127,000 STTR Research Grant to PADT and ASU for Advanced Research in 3D Printing

For as long as PADT has been involved in Additive Manufacturing, we have been interested in how the process of building geometry one layer at a time could be used to more closely represent how nature creates objects.  Nature is able to create strong, lightweight, and flexible structures that can not be created using traditional ways of manufacturing like machining, molding, or forming.  3D Printing gives engineers and researchers the ability to explore the same shapes that nature creates.

As you can imagine, strong and light structures are very beneficial for objects that need to be launched into space.  That is why NASA just awarded PADT and Arizona State University, a Phase 1 STTR grant to explore how to make just this type of geometry.  We are excited to work with ASU to define what the possibilities are in this first phase and then apply for a Phase 2 grant to bring real-world applications of this technology to industry.

This is PADT’s 14th SBIR/STTR and our second joint project with Dr. Dhruv Bhate at ASU.  Many of you may remember the research and process improvements that Dhruv worked on when he was a PADT employee.  We look forward to sharing our results with the Additive Manufacturing community and moving this exciting application for the technology forward.

Please find the official press release on this new partnership below and here in PDF and HTML

If you have any questions about high-performance computing for simulation, either with local hardware or compute resources in the cloud, reach out to info@padtinc.com or call 480.813.4884.

Press Release:

NASA Awards a $127,000 STTR Research Grant to PADT and ASU
for Advanced Research in 3D Printing

The Grant Represents the Strength of 3D Printing in Arizona Exemplified by the Strong Cooperation Between Industry and Academia

TEMPE, Ariz., August 14, 2018 ─ To further advance their longstanding cooperation, PADT and Arizona State University (ASU) were awarded a $127,000 Small Business Technology Transfer (STTR) Phase I grant from NASA. The purpose of the grant is to accelerate biomimicry research, the study of 3D printing objects that resemble strong and light structures found in nature such as honeycombs or bamboo. The research is critically important to major sectors in Arizona such as aerospace because it enables strong and incredibly light parts for use in the development of air and space crafts.

“We’re honored to continue advanced research on biomimicry with our good friends and partners at ASU,” said Rey Chu, principal and co-founder, PADT. “With our combined expertise in 3D printing and computer modeling, we feel that our research will provide a breakthrough in the way that we design objects for NASA, and our broad range of product manufacturing clients.”

PADT recently partnered with Lockheed Martin and Stratasys to help NASA develop more than 100 3D printed parts for its manned-spaceflight to Mars, the Orion Mission. This grant is another example of how PADT is supporting NASA efforts to use 3D printing in spacecraft development. Specific NASA applications of the research include the design and manufacturing of high-performance materials for use in heat exchanges, lightweight structures and space debris resistant skins. If the first phase is successful, the partners will be eligible for a second, larger grant from NASA.

“New technologies in imaging and manufacturing, including 3D printing, are opening possibilities for mimicking biological structures in a way that has been unprecedented in human history,” said Dhruv Bhate, associate professor, Arizona State University. “Our ability to build resilient structures while significantly reducing the weight will benefit product designers and manufacturers who leverage the technology.”

“PADT has been an excellent partner to ASU and its students as we explore the innovative nature of 3D printing,” said Ann McKenna, school director and professor, Ira A. Fulton Schools of Engineering, Arizona State University. “Between the STTR grant and partnering to open our state-of-the-art Additive Manufacturing Center, we’re proud of what we have been able to accomplish in this community together.”

This grant is PADT’s 14th STTR/SBIR award.

To learn more about PADT and its 3D printing services, please visit www.padtinc.com.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Media Contact
Alec Robertson
TechTHiNQ on behalf of PADT
585-281-6399
alec.robertson@techthinq.com
PADT Contact
Eric Miller
PADT, Inc.
Principal & Co-Owner
480.813.4884
eric.miller@padtinc.com

 

Discover the benefits of using additive manufacturing for composites

Introduction to Additive Manufacturing for Composites

Additive manufacturing encompasses methods of fabrication that build objects through the successive addition of material, as opposed to subtractive methods such as CNC machining, that remove material until a final shape is achieved. Composite fabrication is one of the most original forms of additive manufacturing. Steel manufacturing facilities require a very minimum labor for construction and doesn’t require as much material  to build thus saving here.

Whether the process involves wet lay-up, hand lay-up of prepreg materials, or automated fiber placement (AFP), methods of composite manufacture are distinctly additive in nature, building up to final part forms typically one layer at a time. However, the nature of additive manufacturing has been revolutionized with the advent of the 3D printing industry.

Strong, resilient, fiber-reinforced thermoplastics. Lightweight, low-cost composite tooling. Explore these and other characteristics and benefits of additively manufactured composites in the e-book “Introduction to Additive Manufacturing for Composites.”

This e-book covers:

  • Current applications for composite fabrications
  • Comparison of printed and conventional tooling
  • Characteristics of printed mold tooling

Press Release: New Digital Manufacturing Facility for On-Demand Delivery of Production Quality Parts Opened at PADT

PADT is very proud to announce that our new manufacturing facility that uses 3D Printing technology to make production parts in volume, is open for business.  When we bought our first Additive Manufacturing machine in 1994 we dreamed of the day when we could have several machines quickly making complete plastic parts in one step. Carbon’s Carbon’s Digital Light Synthesis™ (DLS) was the technology we were waiting for. It is here now, and we are now making real parts with injection molded quality.

We chose to leverage Carbon’s technology because of the three key differentiators in their system:

  1. Digital light projection is much faster than a laser or print head.
  2. Oxygen permeable optics enables accurate project while keeping the part from sticking to the optics.
  3. Programmable liquid resins produce parts with excellent mechanical properties, resolution and surface finish.

What every engineer wants: fast, strong, and accurate.  And because it is Additive Manufacturing, no tooling is required and shapes that can be created that are impossible to manufacture with traditional methods.  This is the promise of 3D Printing for production, and we can’t wait to see what our customers do with it.

Please read the press release below for more details on the opening of our facility.

You can also find more information here:

Please find the official press release on this new partnership below and here in PDF and HTML

Now is the time to explore production using Additive Manufacturing.  If you have plastic parts that you want to manufacture using 3D Printing, contact Renee Palacios at renee@padtinc.com or 480.813.4884.

Press Release:

New Digital Manufacturing Facility for On-Demand Delivery
of Production Quality Parts Opened at PADT

A Carbon Certified Production Partner, PADT Enables Customers to Make Cost-Effective Parts Quickly with Near-Injection Molded Material Properties

TEMPE, Ariz., June 21, 2018 ─ Realizing the long-term promise of 3D Printing to replace traditional manufacturing as a way to make production parts, Phoenix Analysis and Design Technologies (PADT) today announced the launch of On-Demand Manufacturing with Carbon. As a certified Production Partner of Silicon Valley-based Carbon, PADT can now deliver to its customers cost-effective, quality parts in volumes of between 2,000–5,000 in about one week, using Carbon’s Digital Light Synthesisä (DLS) technology and the Carbon production system.

“Since we started in 3D Printing almost 25 years ago, we have dreamed of the day that we could use additive manufacturing to move beyond prototyping and deliver production parts to our customers when they need them, the way they need them,” said Rey Chu, co-founder and principal, PADT. “Carbon’s DLS technology has made this possible by giving us a faster process that creates parts with the same properties as injection molding.”

Core to On-Demand Manufacturing with Carbon is Carbon’s proprietary DLS technology, which changes the way companies design, engineer, make and deliver products. Carbon’s novel approach uses digital light projection, oxygen permeable optics, and programmable liquid resins to produce parts with excellent mechanical properties, resolution and surface finish. A significant advantage of using the approach is that no tooling is required. High-quality parts are produced without the time or expense of creating molds, and shapes that cannot be made with injection molding can be created using Carbon’s DLS technology.

“Our goal is to deliver true, scalable digital fabrication across the globe, enabling creators to design and produce previously unmakeable products, both economically and at scale,” said Dana McCallum, head of Production Partnerships at Carbon. “PADT has a long history in the industry and a strong reputation for engineering excellence. We’re thrilled to have them as a certified Carbon production partner.”

PADT’s on-demand manufacturing is backed up by in-house product development, inspection, simulation and injecting molding expertise. All parts are produced under its quality system, and its in-house Computer Numeric Control (CNC) machining lets the company complete any critical feature creation on-site with no delays.

PADT’s Digital Manufacturing Facility, the Southwest’s first true “3D Printing factory,” is now open to customers. For more information about On-Demand Manufacturing with Carbon, please visit PADT’s site here or call 1-800-293-PADT. For more information about Carbon, visit www.carbon3d.com.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Media Contact
Alec Robertson
TechTHiNQ on behalf of PADT
585-281-6399
alec.robertson@techthinq.com
PADT Contact
Eric Miller
PADT, Inc.
Principal & Co-Owner
480.813.4884
eric.miller@padtinc.com

 

Press Release: Additive Manufacturing Users Group Selects PADT’s Rey Chu as a DINO Award Recipient

You know you have been doing something for a while when you win an award called the DINO!  3D Printing has been around for over thirty years, and the Additive Manufacturing User Group (AMUG) has been the user-driven organization that has been a foundation of the industry since its beginning.  At their 30th annual conference this year, they handed out awards to individuals who made a significant contribution to Additive Manufacturing.

We are very honored that PADT Co-Founder and Co-Owner, Rey Chu, received one of those awards.  DINO stands for Distinguished INnovator Operator. We agree with AMUG that ““Rey’s contribution to additive manufacturing innovation throughout his career made his selection a simple choice for our awards committee.”

Rey started his three decades in the industry by initiating the Rapid Prototyping Lab at AlliedSignal Engines in Phoenix thirty years ago, now Honeywell Aerospace. In 1994 he co-founded PADT, bringing his Additive Manufacturing experience to our customers for almost twenty-five years now.

Anyone who has been a PADT 3D Printing customer knows that what sets our services apart is our deep technical knowledge about the technologies and our dedication to delivering an outstanding product.  If you have not experienced our world class services for SLA, SLS, FDM, PolyJet, DLS, and Metal Additive Manufacturing, please contact us to see how a team led by a seasoned veteran gets things done.

Please find the official press release on this new partnership below and here in PDF and HTML

As always, just give us a call at 480.813.4884 or send an email to info@padtinc.com to learn more

Press Release:

Additive Manufacturing Users Group Selects PADT’s Rey Chu as a DINO Award Recipient

The Award Celebrates Seasoned Innovators of 3D Printing

TEMPE, Ariz., May 22, 2018 ─ Phoenix Analysis and Design Technologies (PADT) today announced that its Co-founder and Principal, Rey Chu, has been selected as a recipient of the Additive Manufacturing User Group’s (AMUG) DINO (Distinguished INnovator Operator) award for additive manufacturing expertise and service. The 2018 DINO’s were presented at AMUG’s 30th annual user group conference in St. Louis, Missouri. Chu joins a select group of only 149 DINO recipients selected in AMUG’s 30-year history.

“To be a DINO, one must advance and give back to the industry, as well as support AMUG and its members,” said Paul Bates, president, AMUG. “Rey’s contribution to additive manufacturing innovation throughout his career made his selection a simple choice for our awards committee.”

Chu was an early adopter of additive manufacturing, bringing stereolithography to Allied Signal Engines in 1988.  With thirty years in the industry, he is a recognized leader who has been a key contributor in every step of 3D Printing’s evolution. As Chu enters his fourth decade in additive manufacturing, he spends his time traveling the world evaluating new technologies and bringing innovative 3D printed parts to his customers and user communities.

“I have dedicated my professional career to researching and improving the impact that additive manufacturing has on design, engineering and manufacturing across all industries,” said Chu. “AMUG’s recognition of my contributions to this technology is very humbling, and I am very proud to be a part of their community.”

As one of the three founders of PADT in 1994, Chu brought his expertise to the company and built one of the most well-respected 3D Printing service providers in the industry. Chu and his manufacturing team at PADT have worked hand-in-hand with new technology providers, serving as beta testers and early adopters of FDM, SLS, PolyJet, and now DLS technology.  He also led the effort to bring PADT’s SCA (Support Cleaning Apparatus) devices to market; managing design and production for these effective and dependable accessories that effortlessly dissolve away all of the support material from 3D Printed parts.

About Phoenix Analysis and Design Technologies

Phoenix Analysis and Design Technologies, Inc. (PADT) is an engineering product and services company that focuses on helping customers who develop physical products by providing Numerical Simulation, Product Development, and 3D Printing solutions. PADT’s worldwide reputation for technical excellence and experienced staff is based on its proven record of building long-term win-win partnerships with vendors and customers. Since its establishment in 1994, companies have relied on PADT because “We Make Innovation Work.” With over 80 employees, PADT services customers from its headquarters at the Arizona State University Research Park in Tempe, Arizona, and from offices in Torrance, California, Littleton, Colorado, Albuquerque, New Mexico, Austin, Texas, and Murray, Utah, as well as through staff members located around the country. More information on PADT can be found at www.PADTINC.com.

# # #

Media Contact
Alec Robertson
TechTHiNQ on behalf of PADT
585-281-6399
alec.robertson@techthinq.com
PADT Contact
Eric Miller
PADT, Inc.
Principal & Co-Owner
480.813.4884
eric.miller@padtinc.com

The age of large format 3D printing is here, and it is going to be huge

Several recently commercialized technologies have made the dream of being able to print large, we are talking feet instead of inches, parts a reality. In fact “The age of large format 3D printing is here, and it is going to be huge.”

Exploring RAPID 2018 in Fort Worth, TX

Waking up at 3 A.M. isn’t something I like to do often. However, for this conference I was about to attend, it was worth the early rise! Caffeine is a must to get through a long day of walking around and being educated by all the different new and old manufacturers of 3D printers. If you have been around 3D printing, you know there are really two conferences that are above the rest; AMUG and RAPID. Here are some of the things that were announced that I believe are the most significant at RAPID.

Stratasys:

Stratasys didn’t disappoint this year in introducing a new carbon fiber 3D printer, material, and metal technology that will be coming in a year+. We are very familiar with the Nylon 12 Carbon Fiber reinforced material that Stratasys has. It is THE best Nylon 12 carbon fiber material on the market and there are a few factors as to why that is the case. One is that they are using longer strands of Carbon Fiber than the competitor along with 35% carbon fiber filled parts compared to 15%. Soluble support is huge for this material as well, along with 2 to 5 times faster printer speeds. Check out how One Wheel is using this printer to help with manufacturing their cool skateboard:

https://www.youtube.com/watch?v=tOojDgd7KVE

ANTERO 800 is the new material that Stratasys released recently. This material is being used in many amazing ways. Lockheed Martin/NASA/Stratasys/PADT collaborated in a very successful task to get flight approved hardware for one of the next missions to space. Below is the full story on this new and exciting ESD version of Antero 800 FDM material. Could your company also benefit from using this type of material? We would like to help!

http://www.3ders.org/articles/20180418-lockheed-martin-padt-stratasys-to-3d-print-over-100-parts-for-nasas-orion-capsule.html

Vero Magenta V and Vero Yellow V are the new Polyjet materials to help with getting more vibrant colors along with deeper red and brighter yellow. 500,000 color combinations can be achieved now with these 2 materials that have been improved upon. Absolutely beautiful parts can be made with a Stratasys J750 or J735.

Metal We have been asking (and have been asked) for metal for the longest time! When is Stratasys going to jump into the metal game? One of the main reasons why I went to RAPID this year was to see Stratasys Metal parts. They did not disappoint. As far as what density these metal parts are, the process for printing, and when a machine will be available, that is still the big unknown. One thing mentioned at the conference is that they are wanting to make metal 3D printing affordable to all with the ability to 3D print metal 80% cheaper than anything available right now. How this compares to what Desktop Metal, Mark Forged, HP, and others who proclaim to make metal parts cheaper than the Laser or Electron Beam options is yet to be known. Stratasys wants to be able to provide value to the metal market by focusing on areas that are lacking, which is Aluminum. Always good to have competition against the large companies of metal as it makes everyone get better at what they are doing. Read more about this machine and what Phil Reeves (VP of Strategic Consulting from Stratasys) has to say in an exclusive interview with TCT. Also below are a few pictures I took in the Stratasys booth of their metal parts that were on display.

www.tctmagazine.com/tct-events/3d-printing-at-rapid-tct/stratasys-metal-3d-printing/

 

 

 

 

 

 

Software was featured big time at RAPID because it unlocks the ability to 3D print amazing parts like this that was featured in the EOS booth. Lattice structures and topology optimized parts!

There were a lot of companies present at RAPID that highlighted where the industry is headed. Materials with vibrant color capabilities was one such area receiving a lot of attention. While competitors have introduced machines that are capable of printing in a wide variety of colors, they still fall short when compared to the Stratasys Polyjet offerings. Machines such as the J750 and J735 both offer a similar range of color compared to other companies on the market, but surpass them when it comes to material options, applications, and overall usability.

I enjoyed talking with all the major 3D printer manufactures at RAPID. One questions I would ask each of them is, what makes your system better than the competitors? I loved hearing the sales pitch about their machines and there was some great insight gained by asking this.At the end of the day, it all comes down to how you are wanting to use the 3D printer. At PADT we have many different 3D printers, and while we see and understand the appeal of the various different offerings on the market today, there is a reason why we continue to resell and support the brands we do. Let us know how we can help you out and any questions that you have with 3D printing.

Getting to Know PADT: Stratasys 3D Printer Sales and Support

 This post is the eleventh installment in our review of all the different products and services PADT offers our customers. As we add more, they will be available here.  As always, if you have any questions don’t hesitate to reach out to info@padtinc.com or give us a call at 1-800-293-PADT.

When it comes to delivering accurate, robust, and feature-rich additive manufacturing, commonly called 3D Printing, to professional users, one brand of systems stands above all the rest: Stratasys. For over a decade PADT has been a reseller of these outstanding machines in the four-corners states of Arizona, Colorado, New Mexico, and Utah. In fact, our leadership position in the Additive Manufacturing space is built on the foundation of our sales and support history with Stratasys.

Stratasys, The World Leader in Additive Manufacturing

There is one simple reason why Stratasys is the world leader in Additive Manufacturing systems and why so many of our customers keep buying Stratasys systems: They Work.  The whole point of 3D Printing is that you can go from a computer model to a real part as quickly and easily as possible. Stratasys has created a complete set of hardware, material, and software to make that happen.  For hardware, they offer two additive manufacturing technologies: FDM and PolyJet.

FDM, or Fused Deposition Modeling, is the most common technology because it is reliable, accurate, and builds strong parts.  FDM was invented by Stratasys over 25 years ago and still forms the foundation of its product line.  It is a layered deposition process that melts a variety of plastics that are then extruded through a nozzle to draw the shape of each layer. From the desktop MakerBot machines to the industry favorite FORTUS 900, there is a machine that works for every need.  Recently, we have been selling a large number of F370’s to new and existing customers.  FDM systems come in a variety of sizes, speeds, costs, and most importantly, material options.  And best of all, the majority of FDM systems come with Stratasys’ patented soluble support material that makes support removal as easy as dropping your part into a cleaning system. 

If you need greater refinement, the ability to change material, or color, then PolyJet technology is your ideal solution.  The power of PolyJet is that it uses inkjet print heads to deposit tiny dots of liquid material on a build layer. That material is then hardened with an ultraviolet lamp. What is cool is that you can have multiple inkjet print heads and therefore deposit a mix of material within a given layer. This allows you to make parts with very hard, or very soft material in the same build. Or, to mix clear and colors in the same build.  Our customers use Polyjet printers to make everything from accurate medical models of organs to molds for plastic injection molding.  No other 3D Printing technology is as versatile as the PolyJet machines from Stratasys.

The PADT Sales Experience

Lots of people sell 3D Printers. We know because we have been doing it for over fifteen years. And as the technology has become more popular, more and more people are getting into the industry.  Our experience and technically driven sales approach is why customers keep coming to PADT when they have so many choices.  Our sales team is not about this month’s sales goal. They are about building, and more often than not, growing our relationship with customers new and old.  We are all about understanding what you really want to get done, and then finding the right combination of Additive Manufacturing system, accessories, and software that will make it happen.

That expertise comes from the fact that we have been running a 3D Printing service since 1994.  We know the real world of Additive Manufacturing.  No other reseller can bring our expertise and experience to your aid.

Support that Goes Above and Beyond

Once you purchase a system, your journey with PADT hits full swing. Our engineers will help you install, train your users, and then be there when you need us for maintenance and repair. Or simply to answer your questions.  We recently won a series of competitive situations where customers had a choice of who to hire to support their Stratasys systems. They chose PADT over other solutions for one simple reason: we know what we are doing and we really do care.  Our team has driven through snow storms, stayed with machines late into the night, and personally shipped replacement parts just so they could get customer’s machines back online and running as quickly as possible.

Talk to PADT about your Additive Manufacturing Needs

ULA’s Kyle Whitlow demonstrates the ECS duct that was printed using FDM

Regardless of what systems you currently have, or if you don’t have any 3D Printing capability in-house, now is the time to talk to PADT.  We have never had a better offering of solutions in terms of price, performance, and variety of capability.  We are helping universities establish labs, Aerospace companies 3D Print hardware for launch vehicles, and consumer products companies shorten their design cycle.  It may be time for you to upgrade or add a new material or technology. Or maybe you just need some accessories to get more out of the equipment you have.  Regardless of where you are in your Additive Manufacturing journey, PADT is here to help you get more out of your investment.

Exploring the Value of Multi-Print 3D Models for Medical with Stratasys & Intermountain Healthcare

PADT’s Salt Lake City office has been involved with fulfillment of medical 3d Printing of several cases where customers are exploring the value of multi-color and multi-material medical 3D models by using the Stratasys J750 or the Connex 3. One of those cases was presented at the Mayo Clinic’s Collaborative 3D Printing in Medical Practice 2018 course, which was held in Arizona this year.

An Intermountain Healthcare facility in Salt Lake City needed help with 3D printing a patient-specific anatomy, as they were looking to better their understanding of the value of 3D printing using multi-color printer beyond their existing in-house capabilities. In the picture below, Rami Shorti, PhD., a senior Biomechanical Engineering Scientist at Intermountain Healthcare, wrote:

“A patient with a horseshoe kidney and multiple large symptomatic stones, who had failed Extracorporeal Shock Wave Lithotripsy and Ureteroscopy Treatment, was used to evaluate the benefit of using different imaging modalities intraoperatively.” 

Working with us in Salt Lake City, Rami Shorti, PhD, prepared the patient-specific medical imaging segmentation, post-processing of the patient anatomy, and finally generated for us a 3D printable CAD model that we were able to print using a Stratasys Objet 260 Connex 3. Since our office is located just around the corner from the hospital, we were able to work closely with Rami to identify the colors and finish of the final part.

The Connex 3 printer was introduced in 2014 as the only printer in the world that could combine three different model materials in a single print pass. Most 3D printers can only print with one material at a time, which is one of the main reasons why this technology is preferred for medical use cases along with its added precision. In 2017, Stratasys introduced the J750, which again is an industry first, becoming the only printer in the world that can print 6 different materials at the same time.  Combinations of hard plastics and rubber materials allow for a range of shore hardness values along with the ability to mix three primary colors to print 500,000 different colors.

With a quick turnaround needed, we decided to use the Connex 3 and were amazed that we were able to print the parts in two batches. Within 48 hours of receiving the STL files from Dr. Shorti, we were able to 3D print, post-process, and deliver the parts in time for the surgeon to review the time-sensitive surgical planning guides using the mockup. To enhance the transparency of the parts, we simply applied a few coats of Rust-Oleum Clear Gloss to the 3D printed part.  Now we were able to relax and wait for it to dry.  Below is a picture of the finished products displayed at the Mayo Clinic event.

 “3D printing added a level of benefit because of its ability to showcase the stones, renal pelvis, and renal arteries and veins simultaneously through the image fusion step done in Mimics software and with the use of specific materials and contrasting colors.  In addition, its ability to be held and manipulated in space was observed to be beneficial especially for patient education.”

– Rami Shorti, PhD., senior Biomechanical Engineering Scientist, Intermountain Healthcare

PADT is excited to continue our work with Intermountain Healthcare, and grow this relationship as new opportunities arise to leverage multi-material printing.

MSU Denver Shows off their Additive Manufacturing Lab

In November of last year we did a press release on new Additive Manufacturing Laboratory at Metropolitan State University in Denver. Since then all of the partners have been hard at work getting the lab up and running.  Last week MSUD released an interview with the University President about the lab as well as a tour of the lab.  It is a great look at how academia and industry are working together to push advanced manufacturing forward. Not just on equipment, but also with internships and value added engineering at the university.

Take a look:

PADT is proud to have been a key member of the team  and a continued partner for the lab along with Stratasys.

If you want to learn more about how PADT can help your company or university create partnerships like this or leverage 3D Printing in other ways, please contact PADT.  We love this stuff!

PADT’s 2018 AZ SciTech Festival Open House

Scientifically fun for the whole family
February 22nd, 5:00 PM – 8:00 PM MST
Once again, PADT Inc. is proud to partner with AZ SCITECH to promote and celebrate Arizona’s STEAM (Science, Technology, Engineering, Arts, and Math) programs!

As part of this event, we will be hosting an open house that will give you an inside look at what our engineers do all day, as well as a first hand display of the capabilities of innovative technology such as 3D Printing and Simulation.

This is a family friendly event, so don’t hesitate to bring the kids along.

Come see how we make innovation work!

Join us at 7755 S. Research Drive, Tempe AZ, 85284 from 5:00 pm – 8:00 pm. Food and drinks will be provided.

 
This event will be divided up into three main areas:

Come and see what additive manufacturing is capable of. Learn how 3D Printing continues to revolutionize the industry, and brings ideas to life, from concept to a functional part!

PADT prides ourselves in being on the forefront of innovation. Visit the Manufacturing Lab to learn about the latest cutting-edge technology that PADT has invested in, including 3D Scanning, Metal Printing from Concept Laser, and on-demand manufacturing from Carbon. 

Walk from booth to booth and check out a plethora of fun and exciting projects that our engineers here at PADT have been working on, Each showing the unique ways that PADT makes innovation work!

Stratasys Partner Kickoff 2018 in Miami

My first time to Miami was a success! Last year, Stratasys held the partner kickoff in New Orleans and that was when they launched the F1, 2, and 3 series. Since then they have sold over 800 units of these types of FDM 3D printers in the USA. This year in Miami, they did announce something new but it still has a few quarters to go until there is an official release. To say I am excited about what is coming is an understatement! In fact, Stratasys is going to be releasing one new printer here in a few weeks. I am excited for the direction they are going. During this partner kickoff, they mentioned a huge price drop on all of their Polyjet printers! Send us a message for the latest pricing at sales@padtinc.com.

As for PADT employees that were in attendance, we had quite the representation this year. Rey Chu (Co-Owner of PADT), Mario Vargas (Manager of Hardware Sales), Norman Stucker (Colorado Territory Manager), Anthony Wagoner (Utah Territory Manager), Kathryn Pesta (Sales Operations Manager), and me (James Barker, Sr. Application Engineer).

Pictured above from left to right is Mario Vargas, Kathryn Pesta, James Barker, and Anthony Wagoner.

Above is a picture of the Stratasys Panel that was open to some Q&A. 2nd from the right is S. Scott Crump who is the inventor of FDM (fused deposition modeling) printers 30 years ago. Below is a picture of the anniversary info for Stratasys along with Objet (Polyjet technology 20 years) and the merger between the two companies is now 5 years old!

My introduction to 3D printers started 8 years ago with an Objet Eden 500 printer at L-3 Communications where I ran their 3D print lab. 6 months later we got an additional Polyjet printer which was a Connex 500. Amazing that we were able to justify purchasing another high quality machine after a few months of operating the Objet Eden 500! A few years later we got our first Uprint FDM printer from a sister company that no longer had a need for it. After using the Uprint for a few months, I was made aware of some of these thermoplastic materials that could only be printed on the production grade FDM machines. I created a business case to get the Fortus 450 and had every material option available at that time to print with (ABS family of materials, ASA, PC, Nylon 12, Ultem 9085, and Ultem 1010). I love both of these technologies and am confident that they provide the best solution for either rapid prototyping or tooling applications. We even have many customers that are printing production parts with these very precise 3D printers.

One customer that is printing production quality parts is Laika Studios, who has produced these movies: Kubo and the Two Strings, The Boxtrolls, ParaNorman, and Coraline. The presentation they made for us on their stop motion animation was so much fun! 10 years ago for Nightmare before Christmas there were 800+ hand sculpted faces made. For Kubo and the Two Strings, there were 64,000 facial expressions that were all 3d printed with a Stratasys J750. Another fun fact about the movie is that it took 60 hours of 3D printing for one second of film time to be created which is why it takes 2-3 years to complete a film. Moonbeast is a 3ft long puppet that is entirely comprised of 3d printed parts which is the largest character they have done to date. If you have watched Kubo and the Two Strings, it appears to be computer animated but in reality it is stop animation with 3D printed parts! Here is a fun short video (13 seconds) of what the Stratasys printer looks like as it is printing and then support material being removed from the head with different facial expressions.

Matt Gimble, who works for Penske as a Production Manager, shared with us many of the different applications that have helped them save a lot of money since they’ve incorporated 3D printing. Racing is rapidly evolving and is very technical nowadays with a huge emphasis on engineering. 3D printing gives them the tools to meet the new challenges. There are many different great uses they’ve had for 3D printing – from a redesigned rear gear pump design, to a new exhaust tailpipe. Even production parts are made with Stratasys’ newest material, Nylon 12CF. This is a high strength chopped carbon fiber filled Nylon 12. Many that use this material are awe-inspired with its performance! The Superspeedway side view mirror is made out of this material and saved Team Penske 4-6 weeks – which is how long it takes for the mold to be made. Then what if the mold needs altering? Crew Helmet Light/Camera mount is also made in this great thermoplastic/composite material called Nylon 12CF.

The above Fuel Probe was re-engineered and is lighter than its predecessor, plus more ergonomical to help with delivering fuel in a timely manner. Pre-preg carbon fiber sleeves when wrapped around a soluble support material and after the autoclave heating process, the soluble core is dissolved in a sodium hydroxide cleaning tank leaving only the carbon fiber. PADT is a manufacturer for the cleaning tanks that are sold with any Stratasys FDM 3d printer. The core is made out of ST-130 material which is perfect for this application or sacrificial tooling. Ultem 1010 was used as well to create carbon fiber layup tools in a fraction of the time it would have taken for the steel molds to be made. Typical turnaround is 1-3 days, as compared to 4-6 weeks. These are all great applications by Team Penske! Well done!!

We learned a lot at the partner kickoff. Luckily I was able to get this great picture with S. Scott Crump and Mario Vargas! To this day Scott is still inventing and is a major contributor to innovating at Stratasys. While talking with him and Mario, he started talking about these many adventures that he goes on. Scuba diving off the island of Tortuga and having many sharks swimming above isn’t for the faint of heart, yet it is where Scott seems to find his happy place. 

My wife flew out Thursday night to come see Miami with me. It was my first time visiting Florida and we had a phenomenal time there. We put 800 miles on the rental car driving all around. Driving down the Florida Keys all the way to Key West was a blast and if you ever go to Key West, make sure to get a Cuban sandwich from the restaurant Bien! It is MUY MUY BIEN! The islands are so beautiful! We also went to the Everglades where we got an airboat tour and where I even held a 4 year old Alligator and gave it a kiss on the back of its head. My little girls shriek every time they see the picture!

We had a great time in Florida! As we now look to the future, watch out for some exciting updates about new products that are coming! Stratasys, in my opinion, is going to continue being a leader in the Additive Manufacturing realm and I can’t wait to help announce some of the new equipment once it is available!
Any questions you have, you can direct them to me at James.barker@padtinc.com. Thanks!