Exploring RAPID 2018 in Fort Worth, TX

Waking up at 3 A.M. isn’t something I like to do often. However, for this conference I was about to attend, it was worth the early rise! Caffeine is a must to get through a long day of walking around and being educated by all the different new and old manufacturers of 3D printers. If you have been around 3D printing, you know there are really two conferences that are above the rest; AMUG and RAPID. Here are some of the things that were announced that I believe are the most significant at RAPID.

Stratasys:

Stratasys didn’t disappoint this year in introducing a new carbon fiber 3D printer, material, and metal technology that will be coming in a year+. We are very familiar with the Nylon 12 Carbon Fiber reinforced material that Stratasys has. It is THE best Nylon 12 carbon fiber material on the market and there are a few factors as to why that is the case. One is that they are using longer strands of Carbon Fiber than the competitor along with 35% carbon fiber filled parts compared to 15%. Soluble support is huge for this material as well, along with 2 to 5 times faster printer speeds. Check out how One Wheel is using this printer to help with manufacturing their cool skateboard:

https://www.youtube.com/watch?v=tOojDgd7KVE

ANTERO 800 is the new material that Stratasys released recently. This material is being used in many amazing ways. Lockheed Martin/NASA/Stratasys/PADT collaborated in a very successful task to get flight approved hardware for one of the next missions to space. Below is the full story on this new and exciting ESD version of Antero 800 FDM material. Could your company also benefit from using this type of material? We would like to help!

http://www.3ders.org/articles/20180418-lockheed-martin-padt-stratasys-to-3d-print-over-100-parts-for-nasas-orion-capsule.html

Vero Magenta V and Vero Yellow V are the new Polyjet materials to help with getting more vibrant colors along with deeper red and brighter yellow. 500,000 color combinations can be achieved now with these 2 materials that have been improved upon. Absolutely beautiful parts can be made with a Stratasys J750 or J735.

Metal We have been asking (and have been asked) for metal for the longest time! When is Stratasys going to jump into the metal game? One of the main reasons why I went to RAPID this year was to see Stratasys Metal parts. They did not disappoint. As far as what density these metal parts are, the process for printing, and when a machine will be available, that is still the big unknown. One thing mentioned at the conference is that they are wanting to make metal 3D printing affordable to all with the ability to 3D print metal 80% cheaper than anything available right now. How this compares to what Desktop Metal, Mark Forged, HP, and others who proclaim to make metal parts cheaper than the Laser or Electron Beam options is yet to be known. Stratasys wants to be able to provide value to the metal market by focusing on areas that are lacking, which is Aluminum. Always good to have competition against the large companies of metal as it makes everyone get better at what they are doing. Read more about this machine and what Phil Reeves (VP of Strategic Consulting from Stratasys) has to say in an exclusive interview with TCT. Also below are a few pictures I took in the Stratasys booth of their metal parts that were on display.

www.tctmagazine.com/tct-events/3d-printing-at-rapid-tct/stratasys-metal-3d-printing/

 

 

 

 

 

 

Software was featured big time at RAPID because it unlocks the ability to 3D print amazing parts like this that was featured in the EOS booth. Lattice structures and topology optimized parts!

There were a lot of companies present at RAPID that highlighted where the industry is headed. Materials with vibrant color capabilities was one such area receiving a lot of attention. While competitors have introduced machines that are capable of printing in a wide variety of colors, they still fall short when compared to the Stratasys Polyjet offerings. Machines such as the J750 and J735 both offer a similar range of color compared to other companies on the market, but surpass them when it comes to material options, applications, and overall usability.

I enjoyed talking with all the major 3D printer manufactures at RAPID. One questions I would ask each of them is, what makes your system better than the competitors? I loved hearing the sales pitch about their machines and there was some great insight gained by asking this.At the end of the day, it all comes down to how you are wanting to use the 3D printer. At PADT we have many different 3D printers, and while we see and understand the appeal of the various different offerings on the market today, there is a reason why we continue to resell and support the brands we do. Let us know how we can help you out and any questions that you have with 3D printing.

Exploring the Value of Multi-Print 3D Models for Medical with Stratasys & Intermountain Healthcare

PADT’s Salt Lake City office has been involved with fulfillment of medical 3d Printing of several cases where customers are exploring the value of multi-color and multi-material medical 3D models by using the Stratasys J750 or the Connex 3. One of those cases was presented at the Mayo Clinic’s Collaborative 3D Printing in Medical Practice 2018 course, which was held in Arizona this year.

An Intermountain Healthcare facility in Salt Lake City needed help with 3D printing a patient-specific anatomy, as they were looking to better their understanding of the value of 3D printing using multi-color printer beyond their existing in-house capabilities. In the picture below, Rami Shorti, PhD., a senior Biomechanical Engineering Scientist at Intermountain Healthcare, wrote:

“A patient with a horseshoe kidney and multiple large symptomatic stones, who had failed Extracorporeal Shock Wave Lithotripsy and Ureteroscopy Treatment, was used to evaluate the benefit of using different imaging modalities intraoperatively.” 

Working with us in Salt Lake City, Rami Shorti, PhD, prepared the patient-specific medical imaging segmentation, post-processing of the patient anatomy, and finally generated for us a 3D printable CAD model that we were able to print using a Stratasys Objet 260 Connex 3. Since our office is located just around the corner from the hospital, we were able to work closely with Rami to identify the colors and finish of the final part.

The Connex 3 printer was introduced in 2014 as the only printer in the world that could combine three different model materials in a single print pass. Most 3D printers can only print with one material at a time, which is one of the main reasons why this technology is preferred for medical use cases along with its added precision. In 2017, Stratasys introduced the J750, which again is an industry first, becoming the only printer in the world that can print 6 different materials at the same time.  Combinations of hard plastics and rubber materials allow for a range of shore hardness values along with the ability to mix three primary colors to print 500,000 different colors.

With a quick turnaround needed, we decided to use the Connex 3 and were amazed that we were able to print the parts in two batches. Within 48 hours of receiving the STL files from Dr. Shorti, we were able to 3D print, post-process, and deliver the parts in time for the surgeon to review the time-sensitive surgical planning guides using the mockup. To enhance the transparency of the parts, we simply applied a few coats of Rust-Oleum Clear Gloss to the 3D printed part.  Now we were able to relax and wait for it to dry.  Below is a picture of the finished products displayed at the Mayo Clinic event.

 “3D printing added a level of benefit because of its ability to showcase the stones, renal pelvis, and renal arteries and veins simultaneously through the image fusion step done in Mimics software and with the use of specific materials and contrasting colors.  In addition, its ability to be held and manipulated in space was observed to be beneficial especially for patient education.”

– Rami Shorti, PhD., senior Biomechanical Engineering Scientist, Intermountain Healthcare

PADT is excited to continue our work with Intermountain Healthcare, and grow this relationship as new opportunities arise to leverage multi-material printing.

Stratasys Partner Kickoff 2018 in Miami

My first time to Miami was a success! Last year, Stratasys held the partner kickoff in New Orleans and that was when they launched the F1, 2, and 3 series. Since then they have sold over 800 units of these types of FDM 3D printers in the USA. This year in Miami, they did announce something new but it still has a few quarters to go until there is an official release. To say I am excited about what is coming is an understatement! In fact, Stratasys is going to be releasing one new printer here in a few weeks. I am excited for the direction they are going. During this partner kickoff, they mentioned a huge price drop on all of their Polyjet printers! Send us a message for the latest pricing at sales@padtinc.com.

As for PADT employees that were in attendance, we had quite the representation this year. Rey Chu (Co-Owner of PADT), Mario Vargas (Manager of Hardware Sales), Norman Stucker (Colorado Territory Manager), Anthony Wagoner (Utah Territory Manager), Kathryn Pesta (Sales Operations Manager), and me (James Barker, Sr. Application Engineer).

Pictured above from left to right is Mario Vargas, Kathryn Pesta, James Barker, and Anthony Wagoner.

Above is a picture of the Stratasys Panel that was open to some Q&A. 2nd from the right is S. Scott Crump who is the inventor of FDM (fused deposition modeling) printers 30 years ago. Below is a picture of the anniversary info for Stratasys along with Objet (Polyjet technology 20 years) and the merger between the two companies is now 5 years old!

My introduction to 3D printers started 8 years ago with an Objet Eden 500 printer at L-3 Communications where I ran their 3D print lab. 6 months later we got an additional Polyjet printer which was a Connex 500. Amazing that we were able to justify purchasing another high quality machine after a few months of operating the Objet Eden 500! A few years later we got our first Uprint FDM printer from a sister company that no longer had a need for it. After using the Uprint for a few months, I was made aware of some of these thermoplastic materials that could only be printed on the production grade FDM machines. I created a business case to get the Fortus 450 and had every material option available at that time to print with (ABS family of materials, ASA, PC, Nylon 12, Ultem 9085, and Ultem 1010). I love both of these technologies and am confident that they provide the best solution for either rapid prototyping or tooling applications. We even have many customers that are printing production parts with these very precise 3D printers.

One customer that is printing production quality parts is Laika Studios, who has produced these movies: Kubo and the Two Strings, The Boxtrolls, ParaNorman, and Coraline. The presentation they made for us on their stop motion animation was so much fun! 10 years ago for Nightmare before Christmas there were 800+ hand sculpted faces made. For Kubo and the Two Strings, there were 64,000 facial expressions that were all 3d printed with a Stratasys J750. Another fun fact about the movie is that it took 60 hours of 3D printing for one second of film time to be created which is why it takes 2-3 years to complete a film. Moonbeast is a 3ft long puppet that is entirely comprised of 3d printed parts which is the largest character they have done to date. If you have watched Kubo and the Two Strings, it appears to be computer animated but in reality it is stop animation with 3D printed parts! Here is a fun short video (13 seconds) of what the Stratasys printer looks like as it is printing and then support material being removed from the head with different facial expressions.

Matt Gimble, who works for Penske as a Production Manager, shared with us many of the different applications that have helped them save a lot of money since they’ve incorporated 3D printing. Racing is rapidly evolving and is very technical nowadays with a huge emphasis on engineering. 3D printing gives them the tools to meet the new challenges. There are many different great uses they’ve had for 3D printing – from a redesigned rear gear pump design, to a new exhaust tailpipe. Even production parts are made with Stratasys’ newest material, Nylon 12CF. This is a high strength chopped carbon fiber filled Nylon 12. Many that use this material are awe-inspired with its performance! The Superspeedway side view mirror is made out of this material and saved Team Penske 4-6 weeks – which is how long it takes for the mold to be made. Then what if the mold needs altering? Crew Helmet Light/Camera mount is also made in this great thermoplastic/composite material called Nylon 12CF.

The above Fuel Probe was re-engineered and is lighter than its predecessor, plus more ergonomical to help with delivering fuel in a timely manner. Pre-preg carbon fiber sleeves when wrapped around a soluble support material and after the autoclave heating process, the soluble core is dissolved in a sodium hydroxide cleaning tank leaving only the carbon fiber. PADT is a manufacturer for the cleaning tanks that are sold with any Stratasys FDM 3d printer. The core is made out of ST-130 material which is perfect for this application or sacrificial tooling. Ultem 1010 was used as well to create carbon fiber layup tools in a fraction of the time it would have taken for the steel molds to be made. Typical turnaround is 1-3 days, as compared to 4-6 weeks. These are all great applications by Team Penske! Well done!!

We learned a lot at the partner kickoff. Luckily I was able to get this great picture with S. Scott Crump and Mario Vargas! To this day Scott is still inventing and is a major contributor to innovating at Stratasys. While talking with him and Mario, he started talking about these many adventures that he goes on. Scuba diving off the island of Tortuga and having many sharks swimming above isn’t for the faint of heart, yet it is where Scott seems to find his happy place. 

My wife flew out Thursday night to come see Miami with me. It was my first time visiting Florida and we had a phenomenal time there. We put 800 miles on the rental car driving all around. Driving down the Florida Keys all the way to Key West was a blast and if you ever go to Key West, make sure to get a Cuban sandwich from the restaurant Bien! It is MUY MUY BIEN! The islands are so beautiful! We also went to the Everglades where we got an airboat tour and where I even held a 4 year old Alligator and gave it a kiss on the back of its head. My little girls shriek every time they see the picture!

We had a great time in Florida! As we now look to the future, watch out for some exciting updates about new products that are coming! Stratasys, in my opinion, is going to continue being a leader in the Additive Manufacturing realm and I can’t wait to help announce some of the new equipment once it is available!
Any questions you have, you can direct them to me at James.barker@padtinc.com. Thanks!

What we Learned at the Geomagic Conference about Design X and Control X

On September 11th and 12th Mario Vargas (Hardware Manager for PADT Inc.) and I (James Barker, Application Engineer for PADT Inc.) attended Convergence 2017 in Los Angeles, CA.  This event is held by 3D Systems and is the America’s Software Partner Meeting.  Many strategic partners were in attendance from all across the USA, Canada, and Latin America.  We were able to learn about some new enhancements to Geomagic that will help you with Inspection or Reverse Engineering BIG time!  The first day of meetings we heard from Vyomesh Joshi (CEO of 3D Systems referred to as VJ).  He mentioned that 3D Systems has committed 17% to R&D and after going to this event it is apparent!  VJ briefly talked about each of their software options.  The 1st being Control X and how Polyworks currently has the edge for inspection software but after this next software release, he and other 3D Systems employees seemed confident that they could surpass Polyworks.  The 2nd software he talked about was Freeform which allows users to freely design parts by using a haptic device.  This software would be great for creating custom shapes on a whim.  If you haven’t tried a haptic device, you need to!  It will blow your mind as a designer with the freedom you get by using the haptic device and this Freeform Software.  The 3rd software he talked about was Cimatron which aids in the design of mold and die design.  Of the top 10 largest USA mold makers, 7 of them use Cimatron Software.  The 4th software is something new that will be released later this month.  I would love to tell you more about it but can’t….  sorry!

A little about why Mario and I attended this convention, PADT Inc. offers 3D Scanning as both a service and also as hardware or software you can buy.  We use both Geomagic Design X and Geomagic Control X and have experts that are scanning parts for customers for either inspection results or for reverse engineering purposes at our Tempe, AZ office.  The scanner that we use is a CMM quality scanner from Zeiss.  This scanner is capable of scanning 5 million points per scan!  We also offer 3D Systems Capture and Capture Mini scanners which are great tools for reverse engineering.  Each time they scan a part they are capturing about 1 million points per scan.  I am located in the Salt Lake City, Utah office and have a Capture Mini scanner that anyone wanting to see and demo, can come look at and evaluate at our office.  Same holds true for the Capture scanner and Zeiss scanner in our Tempe, AZ Headquarters.  Since we offer these services, we love knowing what new tools are available with these product releases.

Jumping back to the conference, on September 12th, there were breakout sessions.  We chose to go to the Geomagic Design X session to see what enhancements have been made.  This software is the preferred software in all of the industry for reverse engineering parts.  There were many different vendors/partners in the room we were at.  There was even a rep from Faro who prefers to sell Geomagic Design X software with each Faro Arm that he sells because this software is so powerful.  The neat thing about this software is all of the improvements that have been made to it.  If you are accustomed to designing parts with Solidworks, Solidedge, NX, Catia, Pro-E or any of the other CAD software, you will be able to use this software with ease.  Every command that you execute within Design X is editable just like the major CAD software.  You have the ability to create sketches on planes or to make life even easier, there are wizards that automatically create sketches and perform a command like an extrusion or revolve that is editable after completing the wizard.  After you have finished reverse engineering your parts within Design X, you can live transfer your new CAD data over to the above-mentioned CAD software.  Once you have imported this data into NX or Solidworks, you can again edit any of the sketches that were created within Design X but now in your software of choice!  I would love to show you how powerful this software is.  There is a reason why it is the preferred reverse engineering software in the industry.

Geomagic Control X session was next.  It also happened to be the last session of the day.  To be honest, I have only used Design X so I was looking forward to learning more about this software.  From all the demo’s that I have seen in the past from this software, it appeared really hard to use.  That is all changing with this new software release and is the reason why VJ is confident that it will compete and could exceed Polyworks as the preferred software for inspection.  The biggest thing that stuck out to me was the ability to set up a workflow for scanned data for inspection so that you can create your inspection reports.  The idea is that if you have a part that needs to be inspected for quality, you 3D scan the part and then import the CAD file.  By overlaying the scanned data over the CAD data you can show the deviation within the 2 parts and you are able to have different views in a 3D PDF to share with others the actual quality of the part.  As you are assigning your GD&T to this first inspection file, you are creating the first steps of the workflow.  There are many options for the workflow that you can create and 3D Systems has made it easy to create the workflow.  I feel that the power of this software is when you can open up the results of the first inspection report and do a split screen on your monitor to show the 100th or 1,000th part side by side and see how that part deviates from the first.

I had a great time in California at this event even though all of our time was spent at the hotel.  The streets looked nice from the window on the 11th floor.  Maybe next time we will venture out!  If anyone from 3D Systems is reading this, let’s go out to eat next time instead of eating at the hotel for breakfast, lunch, and dinner!  Although the view from the dining room was nice!

If you have any questions about 3D scanning whether it is for Inspection or for Reverse Engineering, let us know at PADT Inc.  We look forward to helping you.

Quick Tips for Stratasys’ new Nylon 12CF Material

One of the newest materials available for the Stratasys Fortus 450 users (other machines could have this capability at a later date) is the Nylon 12CF. Nylon 12CF is a Carbon Fiber filled Nylon 12 filament thermoplastic. The carbon fiber is chopped fibers that are 150 microns long. This is Stratasys’ highest strength and stiffness to weight ratio for any of their materials to date as shown below. 
Often times, when Stratasys is getting close to releasing a new material, they will allow certain users to be a beta test site. One beta user was Ashley Guy who is the owner of Utah Trikes, which is located in Payson, Utah. He is having so much success with this material that he is making production parts with it. Watch this video to hear more from Ashley and to see some of his 3D printed parts.

Talking with Ashley, he has helped us with understanding some of the tips and tricks to get better results from printing with this material. One change that he highly recommends is to adjust the air gap between raster’s to -.004”. This will force more material between the raster’s so there won’t be as many noticeable air gaps. Here is a visual representation of the air gap difference using Stratasys software Insight:

The end goal at Utah Trikes is to produce production parts with this material, so by adjusting the air gap, the appearance of the parts look close to injection mold quality after the parts have been run through a tumbler. Some key things that I really like about this material is that the support material is soluble and easily removed using PADT’s own support cleaning apparatus (SCA Tank) that aid with the support removal. After the support has been removed, they are placed in a tumbling machine to smooth the surfaces of the part with different media within the tumbling machine. Any post process drilling or installing of helicoil inserts or adding bushings to the part is done manually.

Jerry Feldmiller of Orbital ATK, who also did a beta test of this material at his site in Chandler, Arizona, mentions these 3 tips:

  1. Nylon12 CF defaults to “Use model material for Support”. 90% of the time I uncheck this option.
  2. I use stabilizing walls and large thin parts to anchor the part to the build sheet and prevent peal up.
  3. Use seam control set to Align to Nearest.

Jerry also supplied his Nylon 12CF Tensile Test that he performed for this new material as shown below. He mentions that the Tensile Strength is 8-15 ksi depending on X-Y orientation.
~5 ksi in Z-axis, slightly lower than expected.

This part is used to clamp a rubber tube which replace the old ball valve design at ATK. Ball valves are easily contaminated and have to be replaced. After two design iterations, the tool is functioning.

Jerry also follows a guide that Stratasys offers for running this material. If you would like a copy of this guide, please email me your info and I will send it to you. My email is James.barker@padtinc.com

Now onto Stratasys and the pointers that they have for this material. First, make sure the orientation of the part is built in its strongest orientation. Nylon materials have the best layer-to-layer bond when comparing them against the other thermoplastics that Stratasys offers.

Whenever you print with the Nylon materials (Nylon 6, 12, and 12CF), it is advised to print the sacrificial tower so that any loose strands of material are collected in the sacrificial tower instead of being seen on the 3D printed part. You also want to make sure that these materials are all stored in a cool and dry area. Moisture is the filaments worst enemy, so by storing the material properly, this will help tremendously with quality builds.

It is also recommended for parts larger than 3 inches in height to swap the support material for model material when possible. Since the support material has a different shrink factor than the model material, it is advised to print with model material where permitted. This will also speed your build time up as the machine will not have to switch back and forth between model and support material. We have seen some customers shave 5+ hours off 20 hour builds by doing this.

This best practice paper is the quick tips and tricks for this Nylon 12CF material from our users of this material. The Stratasys guide goes into a little more detail on other recommendations when printing with this material that I would like to email to you. Please email me with your info.

Let us know if this material is of interest to you and if you would like us to print a sample part for testing purposes.

Learn About the New Stratasys 3D Printers and New Orleans

It was my first time visiting New Orleans. I have heard many stories of how good the food is and how everyone is really nice there so I was excited to visit this city for a business trip. Stratasys Launch 2017! There was some buzz going on about some new FDM printers that Stratasys has been working on and I was really excited to see them and hear what sets them apart from the competition. Rey Chu (Co-Owner of PADT), Mario Vargas (Manager of 3D Printer Sales), Norman Stucker (Account Executive in Colorado), and I (James Barker, Application Engineer) represented PADT at this year’s Launch.

The city did not disappoint! I ate the best gumbo I’ve ever tried. Below is a picture of it with some Alligator Bourbon Balls. The gumbo is Alligator Sausage and Seafood. Sooooo Good!!


My last night in New Orleans, Stratasys rented out Mardi Gras World. That is where they build all the floats for Mardi Gras. They had a few dancers and people dressed up festive. I was able to get a picture of Rey in a Mardi Gras costume.

After dinner at Mardi Gras World, I took Rey and Mario down Bourbon Street one last time and then we went to Café Du Monde for their world famous Beignets. Everyone told me that if I come home without trying the Beignets, then the trip was a waste. They were great! I recommend them as well. Below is picture of Mario and me at the restaurant.

As you can see we had a fun business trip. The best part of it was the unveiling of the new FDM printers! Mario and I sat on the closest table to the stage and shared the table with Scott Crump (President of Stratasys and inventor of FDM technology back in 1988). These new printers are replacing some of Stratasys entry level and mid-level printers. What impressed me most is that they all can print PLA, ABS, and ASA materials with the F370 being able to print PC-ABS. You also can build parts in four different layer heights (.005, .007, .010, and .013”), all while utilizing new software called GrabCad Print.

GrabCad Print is exciting because you can now monitor all of you Stratasys FDM printers from this software and setup queues. What made me and many others clap during the unveiling is that with GrabCad Print you no longer have to export STL files! You can import your native CAD assemblies and either print them as an assembly or explode the assembly and print the parts separately.

      

Everyone wants a 3D Printer that can print parts faster, more accurately and is dependable. You get that with the family of systems! Speed has increased big time, they are twice as fast as the Dimension line of FDM printers. Stratasys has published the accuracy of these new printers to be ±.008” up to a 4 inch tall part and then every inch past 4 inches, you add another .002”. These machines are very dependable. They are replacing the Uprint (Uprint SE Plus is still current), Dimension, and Fortus 250 machines that have been workhorses. Many of our customers still have a Dimension from 2002 when they were first launched. In addition to the 43 existing patents that Stratasys has rolled into this phenomenal product, they have an additional 15 new patents that speaks volumes as to the innovation in these 3D printers.

Stratasys Launch was a blast for me. Seeing these new printers, parts that were printed from them, and understanding why these are the best FDM printers on the market was well worth my time! I look forward to helping you with learning more about them. Please contact me at james.barker@padtinc.com for more information. If you would like to hear my recorded webinar that has even more information about the new F170, F270, and F370, here is the link.  Or you can download the brochure here.

3D Printed Molds Save Time and Money for Specialty Lighting Company

Western Technology is a manufacturer of specialty lighting solutions that cater to a variety of highly specialized industries such as aviation, oil and gas, and maritime.  Their products are used in a variety of environments making it important that the design is both versatile and functional.

In their Utah office, they have been successfully utilizing a Stratasys PolyJet 3D Printer to create polyurethane molds.  By using 3D printed molds, they have been able to save both time and money over traditional manufacturing methods.

Western Technology’s 3D Printed Toggle Mold

 “Below is a pictorial of how we’ve used our new 3D printer to develop and create polyurethane parts. The parts we are producing in this mold are used to trigger a magnetic sensor inside a sealed aluminum box. Each part has a magnet and aluminum insert cast inside.” Lyal Christensen at Western Technology

The mold was printed using a Stratasys Objet 500 Connex 1 printer in a Vero Blue material (standard plastic).  This is the final result after support material has been removed.

WT1

The mold is comprised of two halves that each have 3 different parts to create this Polyurethane mold.  Below one side is shown in an un-assembled view.

WT2

Steel pins are press fit into the 3D printed part with ease to help with locating the magnets in the correct location.  Also you can see that the part has a gloss finish to it.  The parts were printed in the glossy mode which helps in minimizing the amount of support material needed to print the parts.

WT3

Inserts and Magnets are added to the mold along with a Urethane mold release agent.  The Aluminum inserts are held in the right place by screws that keep the inserts suspended so that the Urethane can engulf all sides of it.

WT4

The clamped mold then has the Urethane fed into it which is poured at room temperature.  Once all of the cavities are filled, the mold is left to cure at room temperature for just under one hour.  Using this technique, they are able to complete 6 or 7 sets per day.

WT5

The following morning the screws and the insert bridge are removed.

WT6

The mold is pried apart using a flathead screwdriver at specific cutout locations that were printed into the mold.  With a simple turn of the wrist, this mold is easily separated.

WT7

There is a little bit of flash which can easily be removed.  These parts are almost ready for the customer.

WT8

The parts are cut away and are ready for de-flashing and finishing.

WT9

At Western Technology, Lyal estimates this mold would have cost $2,000+ to manufacture in just man hours.  They were able to get 400+ parts out of this mold and are still using it.

If you would like to learn more about how to implement 3D Printing into your processes to save time and money, contact us at sales@padtinc.com.

AMUG 2016 Recap

AMUG LogoThis was my first year attending AMUG (Additive Manufactures User Group) and after attending RAPID last year in Long Beach, California, it exceeded my expectations.  Everyone I ran into last year at RAPID said that I HAD to attend AMUG since I am a user of both Stratasys Polyjet and FDM technologies.  Once I found out the dates I immediately asked my supervisor if I could attend this years AMUG that was held in good old St. Louis, Missouri!  I am so glad I was able to make it to AMUG.  Every day we had the decision to pick between 18 different presentations.  Not all of the presentations were repeated each day.  We had presentations from Universities, Aerospace, Defense, Medical, Manufactures of 3D printers and many more!  I needed a clone of myself because the decisions of choosing one presentation over another was way too difficult.  Luckily there were 5 representatives from PADT at this convention and we were able to share notes.

Stratasys J750

Stratasys unveiled a new 3D printer on the first day of AMUG and it is phenomenal! It is called the Stratasys J750.  The user has the ability to print with 6 different materials at the same time choosing between 360,000 different colors!  What other 3D printer is there that you can load Digital ABS, Tango (rubber), and different colors and build with them?  NONE!  Stratasys also revamped their print heads by doubling the amount of nozzles per material which results in better layer resolution!  All print modes have finer layers resulting in better aesthetics than any other printer previous with High Quality layers at 14 microns!  By teaming up with Adobe, the user can import a CAD file into Adobe Photoshop to assign a color pattern, picture, or even a texture to their CAD file.  To say I am excited about this printer is an understatement!  I need one now!Hean J750SSYS Display

STRATASYS WORKSHOPS:

Carbon fiber soluble core workshop

In this workshop we learned how to setup a soluble core, that was printed on a Stratasys Fortus 450 MC using the SR-30 support, for a carbon fiber application.  This is a great application for the soluble support material. Turns out there are many customers using this application so that they don’t have to inventory expensive tools and can print on demand cores for their customers.

Soulable Core 2Soluable Core 1

During this presentation we learned that you will need to sand the part and then apply some sealing agent to the core/mandrel.  As for what type of sealing agent works best?  The answer is all.  They haven’t had any issues with different sealing agents from different vendors.  Several coats are needed.  When the part is building, you have the ability to setup pauses in the build so that you can add inserts or bushings to the part.  Because Aluminum dissolves in Sodium Hydroxide, you will want to use a different metal.

If this is a application that you are interested in, please email me at James.barker@padtinc.com and I will respond ASAP to you inquiries.

Injection Mold 3D Printed Inserts 

This application is a huge money and time saver as well!  In this picture the inserts were 3D printed using a Digital ABS-Like material from a Polyjet printer.  The brackets and ejector plate were printed using the FDM technology and built out of Ultem 1010.    These builds took under 3 hours to build and allow the customer to quickly inject material to prove the design using the actual material required!  A few months ago we held a seminar in Utah at 2 different locations and taught this application with a Stratasys expert.  Here is a neat video Professor Jonathan George did showing this application in use: YouTube.

Here is a video that Stratasys put out that shows their printers in use and the whole process as well.  YouTube

IM Molds

ADDITIVE MANUFACTURING at GE AVIATION

LEAP Engine Fuel Nozzle

GE’s biggest success story is their LEAP Engine Fuel Nozzles.  For each LEAP engine manufactured there are 19 fuel nozzles needed.  Instead of assembling them by hand they are now all 3D printed.  10,000 engines have been sold to date since the engine was introduced in 2012.  By 2018, GE needs to 3D print 35,000 fuel nozzles and by 2020, they have estimated that they will need a total of 100,000 nozzles.  There is a 25% weight reduction and these parts are 5 times more durable than conventional manufacturing methods.

LEAP Enginh Fuel Nozzle

T25 Temperature Sensor

This housing is an inlet temperature sensor that was the 1st 3D printed part certified by the FAA to fly inside a GE commercial jet engine! GE Aviation is retrofitting 400 GE90-94B engines that power Boeing 777’s.  These sensors are subjected to all elements so there was rigorous testing done to ensure safety.

T25 Temp Sensor

The Center for Additive Technology Advancement CATA

This facility is already open and running.  The goal is to advance Additive Manufacturing across all divisions of GE.  More information can be found here.

CATA

  XJET – NEW METAL TECHNOLOGY

XJET LogoI have been operating 3D printers going on 7 years.  I am a huge fan of Stratasys/Objet 3D Printers so I made sure to attend the presentation by XJET.

AMUG was XJET’s unveiling of their new metal technology.  XJET was formed in 2005 by the inventors of Objet/Polyjet technology.  Since 2005 they have been able to raise $170 million to help spur their new idea.  They call it Nano Particle Jetting™.  The way it works is they take a nano particle of metal and suspend it in a liquid material that is then jetted from the print heads very similar to how Polyjet printers work.  Since the metal is infused in a liquid material there isn’t any harm dealing with powdered metals which eliminates the fear of dealing with a combustible powder metal!  The parts are built in a heated chamber which evaporates the liquid material that was holding the nano particle.  Another key part to their technology is the support material which is NOT the same material as the metal!  During the presentation, Dror Danai mentioned that there is no need to remove the support material with a mechanical process.  The parts will need to be annealed to remove stresses that occur during the printing process.  While the part is being annealed the support material will be removed.  I am not sure how this is done, but it was hinted that the support dissolves or evaporates away.

XJET Machine

The print heads have 512 nozzles on each of them that can jet 18,000 droplets per second which helps achieve a layer thickness as fine as 2 Microns!!  Currently XJET has 7 machines that they are operating.  6 are in R&D and 1 is being used to print benchmarks for customers to help prove the technology.  Here is a link to their website showing how their technology works: XJET

If you would like to see this printer in person you can at RAPID which is in Orlando, Florida from May 16-19.  Here is a link to RAPID.

CONCLUSION

SSYS Ice SculptureThere are many other presentations and workshops that aren’t covered in this synopsis.  I focused on things that really excited me about the future of where this technology is headed.  If XJET technology is scalable, it can be revolutionary.  GE continues to be at the forefront of this technology and is continually pushing the limits of Additive Manufacturing.  The workshops I attended were mainly Stratasys driven because I was curious how you can make end-use production parts with their 3D printers.  Also the unveiling of the Stratasys J750 helps confirm that innovation is still taking part by one of the leaders in Additive Manufacturing in showcasing their new 3D printer that can print with 6 different materials!

All in all I had a phenomenal time at AMUG and met some very interesting people that share my same passion for 3D printing.  If you have the opportunity to go to RAPID this  year in Florida, please let me know your thoughts of it.  I have heard there are some new materials coming out from Stratasys along with new 3D printers that will be showcased.  It is amazing where 3D printers have come from, and I am anxious to see where we are headed!

If you would like to contact me with any questions then please email me at this email address:

James.Barker@padtinc.comJames

James Barker, Application Engineer

Phoenix Analysis & Design Technologies

Beyond the Hype – Additive Manufacturing and 3D Printing Worldwide, A Summary of Terry Wholers’ Thoughts

3d-printing-terry-wholers-padt-1Terry Wholers is the founder and principal consultant of Wohlers Associates Inc., an independent consulting firm that was launched 28 years ago. Wohlers and his team have provided consulting work to over 240 organizations in 24 countries as well as to 150 companies in the investment community. He has authored over 400 books, articles, and technical papers. Terry has twice served as a presenter at the White House. For the past 20 years hes has been the principal author for the Wohlers Report which is an annual worldwide publication focused on Additive Manufacturing and 3D Printing. In 2007 more than a 1,000 industry professionals from around the world selected Terry as the most influential person in Rapid Prototyping Development and Additive Manufacturing.

PADT was fortunate enough to sponsor, with the local SME group, an event in Fort Collins, Colorado where Terry came and shared his views on the industry. What follows is a summary of what we learned. They are basically notes and observations.  Please contact us for any clarification or details: 

Terry Wohlers started his talk by asking: How many people have heard of 3D printing?

He noted that these days it was pretty much everyone and if you haven’t then you must be living in a cave. It is like everyone can’t get enough of it.

There has been a lot of growth. In the last 5 years the industry has quadrupled. Last year it was a 4.1 billion industry and this year 5.5 billion. Terry doesn’t own any stock in any of the different 3D printing companies. He cautioned everyone to not confuse the share prices with the growth and the expansion within this industry.

After this introduction, Terry stated that there were really two things in the industry that really excited him.  3D Printing for Manufacturing and for Production Parts.

3D Printing in Manufacturing.

The first area to watch is the use of this technology for manufacturing applications. The team looking at the sales data drew a line in the sand for the low cost hobbyist printers at $5,000. There were 140,000 of them sold last year compared to under 13,000 above $5k. However, they don’t cost much so the money is still in the industrial machines. Here are the revenues for 2014:

Industrial: 1.12 Billion, or 86.6%.
Hobbyist: 173.3 Million, or 13.4%

There are FDM clones everywhere. 300 or more brands. There is a lot of open source software out there to develop your own FDM printer.

One thing to watch in the industry is expiring patents. This opens up competition and lowers prices and sometimes brings better machines to market.  Right now, the SLS patent expired in June of last year so we are seeing new Selective Laser Sintering devices coming to market.

An exciting example of using 3D printing in manufacturing is the landing gear created by Stratasys. It was built and assembled with a Stratasys FDM printer and used for a fit check. Very Cool!

3d-printing-terry-wholers-padt-2

www.makepartsfast.com/2008/06/523/how-to-make-accurate-cad-to-stl-file-transitions

In medical, some great examples of tooling are jigs, fixtures, drill press, and custom cutting guide for knee replacement. You can take scanned data and create a custom cutting guide for replacing your knee. Tens of thousands of those have been done.

Lots of work is being done on test fixtures as well.

In tooling, with additive manufacturing you can do things that are highly complex. Instead of just straight gun drilled cooling channels you can make the cooling channels conform to the purpose of the part. You can reduce 30-300% cycle time by improving the cooling channels for injection molding dies.  It turns out that Lego is printing their molds! They are using conformal cooling to increase their cycle times.

On the aerospace side of things, end use parts are literally taking off.  Airbus is flying today 45,000 to 60,000 Ultem plastic parts. Both passenger and non-passenger planes have Ultem parts on them.

3D Printing for Final Production Parts

The second area to watch is the next frontier, and that is what excites him. You can do structural ribs in 3D printed parts. You need to make sure there are places in your parts to remove the support material used if you are going to use structural ribs. Design is absolutely critical. When he was at Solidworks world in Orlando a few years ago, there was a 3D printed bird that was flapping its wings.

This is a part of that bird that was being flown.

3d-printing-terry-wholers-padt-4 3d-printing-terry-wholers-padt-3
Two weeks ago Terry did a four day course at NASA on Design for Additive Manufacturing. The importance of the subject now is that companies and organizations are paying a lot of money to host people to teach them how to design for additive manufacturing. It was a great learning experience and NASA has already signed up for a second course that is focused on metals. NASA 3D printed a turbopump with 45%fewer parts that runs at 90,000 rpm, and creates 2,000 hp. This turbopump manufactured with conventional methods costs $220,000 for one, they can 3D print 2 of them in Inconel for $20,000.

A big part of Design for Additive Manufacturing is using the correct thinking but also using the right tools. There is a lack of both. We are taught to design for the conventional method of manufacturing. Now we have to undo some of that and think, hey there can be a better way to design this part.

One of those ways is Topology Optimization (let mathematics decide where to place the support structure so there is a increased strength to weight ratio). Another is the use of lattice structure (mesh and cellular). Ever since the beginning of time, man would make parts out of a solid material. Well now you can have a thin skin and a lattice structure on the interior to produce something superior in some cases.

We need these kind of tools integrated into the different CAD software’s so that we can design better parts.  This bracket is flying on a Airbus. This cabinet bracket is made out of titanium and is flying on the A35 Airbus. It was designed for 2.3 tons and actually holds up to 12.5-14 tons depending on the test. Peter Zander at Airbus believes that in 2 years they will be printing 30 tons of metal per month!

3d-printing-terry-wholers-padt-5

GE Aviation is building fuel nozzles for the new leap engine. The new design is 25% lighter and five times more durable than the previous design that took 20 different parts to assemble to make one fuel nozzle. The will be printing 40,000 fuel nozzles per year.

Consumer Products:
It is going to be very big. Terry thinks this is going to be a sweet spot in the industry. Once example is this guitar called the Hive Bass. It is built out of Nylon and would cost you $3,500. You can have a custom guitar made for that price.

3d-printing-terry-wholers-padt-6
There is a Belgium company that creates custom frames for eyewear.

3d-printing-terry-wholers-padt-7

There is also a lot of Jewelry available for consumers along with many other products.

For metal part production there are many steps needed to finish the part. About 9 steps that Terry counted so it can be a long process.

Myth: Additive Manufacturing is fast! Well that depends on Polymers versus Metals and the size and complexity of the parts. Airbus had one build that took 14 days to print with their metal printer! GE mentioned that they have to print the same part twice before they get it right because they will have to reorient the part or change the build parameters to get the best quality build possible.

According to some estimates the global manufacturing economy is in the range of $13 trillion. If this technology were to penetrate 2% of it then that is over a quarter of a trillion dollars. 5% is approaching two thirds of a trillion!

Terry finished by asking: How many of you think this will be North of the 5% estimate?

We want to thank Terry for giving such an informative talk, and New Belgium Brewing for hosting. The networking afterwords was fantastic. 

If you would like to stay up to date on 3D Printing, we recommend the Wohlers Report. It is our primary reference document here at PADT.