Calculating Wave Speeds in Flownex

Categories:

Today, I will be discussing how to use a quick script component to calculate wave speed for a pipe in Flownex. We will be developing a script to determine the wave speed in two elastic tubes in different scenarios. Both networks are dependent on the 1D tube geometry and mechanical properties. Longitudinal pressure waves may be modeled in Flownex within a wide variety of materials or timescales.

First, we will calculate the pulse wave velocity (PWV). This is a non-invasive method of determining arterial stiffness using the blood pressure measured at to different arteries, used as an indicator of cardiovascular health. Next, we will apply the script to a pipe with a sudden valve closure to calculate the wave speed and the reflection time of the pressure wave. For this example, we will be using Flownex version 8.14.1.4845.

Choosing Components and Boundary Conditions

We will be simulating the wave speed of due to an influx of 60cc of blood (I will be creating a custom fluid for this) over a 0.1s interval (throughout our simulation) to produce a pressure wave. This arbitrary pressure wave will allow us to visualize the wave speed of the artery. We can simulate the artery by dragging and dropping a pipe component onto the canvas and placing boundary conditions on the inlet and outlet.

Next, we will specify a zero-mass flow at the inlet, and set the temperature to 35°C.

We will use a constant pressure for our outlet boundary condition.

Lastly, we will assign our inlet node to contain a volume of 60cm3.

Next, we can define the vessel geometry. We will check “Specify advanced inputs” in the pipe properties, allowing us to access the “Transient and Water Hammer Related Inputs” subset of mechanical properties. We will model a simplified aorta with a diameter of 25mm and a length of 30.48cm. Additional mechanical properties of the pipe are shown below:

Flownex will use the diameter to thickness ratio to determine if a thin wall model is necessary for the simulation. A diameter to thickness ratio above 40:1 will use a thin-walled pipe model.

Transient Actions Setup

Now that we have defined our boundary conditions, we can setup an action to perform this task by navigating to the configuration tab in the ribbon and clicking on Action Setup. Additional information on setting up transient actions form a table can be found here.

We will create a New Scenario in the actions setup and set the target property to the volume of the inlet node. We can do this by selecting the node and by dragging the volume from the inlet node properties (left) window into the actions setup (right).

Setting the value type to table will allow us to create a constant volume flow rate at the inlet after the no flow initial condition, using the input below.

Calculating Wave Speed

We can also easily calculate the wave speed of a component, using a quick script. Quick scripts are easily implemented, and we will specify unit types to allow Flownex to evaluate unit conversions for calculating wave speeds. I won’t cover quick script/data transfer link setup in this post, but you can find a previous example here. After inserting a quick script component, we can double click on it to modify the inputs, outputs, and calculation.

Rather than recomputing the speed of sound of our fluid, we will take it directly from the properties of the pipe. Additionally, we can calculate the time when the wave will reach our boundary. The PWV along multiple pipe components (such as carotid-femoral PWV or examining a pipe main in a complex network) can be also calculated with direct referencing to avoid using data transfer links to pipe components in a quick script.

Simulation Setup

We have defined the time constant (the time which the wave will reach the end of the pipe). We will use this to determine the duration of our simulation. We can specify our end time as our time constant (0.055435s).

Next, if we right click on the inlet node, we can hover over “Plot a Flow Path” and select Total Pressure. This can be plotted for any pathway specified through a network by explicitly specifying a flow path, covered in a previous post. Plotting the flow path will allow us to visualize the pressure profile across the length of the artery. We can solve steady state for our initial conditions and run the solution our network and run our solution.

Simulation Results

We can see a plot of the longitudinal pressure wave in the vessel below

The pressure wave propagation will depend on the impedance mismatch of the downstream vasculature due to changes in diameter or arterial bifurcations.

Lastly, we can us the same procedure to model the wave reflection in the piping system used for Demo Network 4. This network simulated a sudden valve closure on the righthand side of a steel pipe. Using our script, we can determine that the wave will take 0.07525 seconds to reach the other side of the 101m pipe.

We can visualize the wave reflection in our steel pipe back to the valve by doubling our time constant and running a transient simulation.

A flow path graph may also be used to visualize the placement of an accumulator along the pipe to dampen wave reflection to the valve.

We have seen that Flownex can easily model a wide variety of systems from pulse wave velocity to water hammer effects in piping systems. The pressure wave in the steel pipe(1329m/s) close to the speed of sound in open water, whereas the artery has a pulse wave velocity of 5.4983m/s, far below the speed of sound. Now, we can easily write a quick scripts to determine the speed which pressure waves will pass through a network pathway.

Categories

Certified Elite Channel Partner

Get Your Ansys Products & Support from the Engineers who Contribute to this Blog.

Product Development
Platinum Partner

Technical Expertise to Enable your Addictive Manufacturing Success.

PADT’s Pulse Newsletter

Keep up to date on what is going on at PADT by subscribing to our newsletter.


By submitting this form, you are consenting to receive marketing emails from: Phoenix Analysis and Design Technologies, 7755 S. Research Dr., Tempe, AZ, 85284, https://www.padtinc.com. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact

Share this post:

Share on twitter
Share on facebook
Share on linkedin
Share on pinterest

Upcoming Events

11/23/2022

Simulation Best Practices for Electronics Reliability - Webinar

11/16/2022

Discovery Updates in Ansys 2022 R2

11/10/2022

VentureCafe Phoenix Panel: Venture Capital in AZ

11/08/2022

2022 GOVERNOR’S CELEBRATION OF INNOVATION AWARDS + TECH SHOWCASE

11/03/2022

VentureCafe Phoenix Panel: Angel Investment in AZ

11/02/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R2

10/26/2022

Simulation Best Practices For Chip-Package-System Design & Development

10/20/2022

Nerdtoberfest 2022

10/19/2022

2022 Southern Arizona Tech + Business Expo

10/19/2022

LS-DYNA Updates in Ansys 2022 R2 - Webinar

10/17/2022

Experience Stratasys Truck Tour - Clearfield Utah

10/14/2022

ASU School of Manufacturing Systems and Networks - Formal Opening Cele

10/14/2022

Experience Stratasys Truck Tour - Midvale Utah

10/12/2022

Experience Stratasys Truck Tour - Littleton Colorado

10/06/2022

Fluids Updates in Ansys 2022 R2 - Webinar

10/05/2022

Experience Stratasys Truck Tour - Colorado Springs

09/29/2022

White Hat Life Science Investor Conference - 2022

09/28/2022

2022 AZBio Awards

09/28/2022

Simulation Best Practices for Rotating Machinery Design & Development

09/21/2022

ExperienceIT NM 2022

09/21/2022

Additive Updates in Ansys 2022 R2 - Webinar

09/14/2022

Rocky Mountain Life Sciences Investor & Partnering Conference

09/08/2022

Ansys Optics Simulation User Group Meeting - Virtual

09/08/2022

Ansys Optics Simulation User Group Meeting

09/07/2022

SI & PI Updates in Ansys 2022 R2 - Webinar

08/31/2022

Simulation Best Practices for Developing Medical Devices - Webinar

08/24/2022

Mechanical Updates in Ansys 2022 R2 - Webinar

08/10/2022

Tucson after5 Tech Mixer: Ruda-Cardinal

08/05/2022

Flagstaff Tech Tour, 2022

08/02/2022

2022 CEO Leadership Retreat

08/01/2022

2022 CEO Leadership Retreat

07/27/2022

Thermal Integrity Updates in Ansys 2022 R1 - Webinar

07/20/2022

Simulation Best Practices for the Pharmaceutical Industry - Webinar

07/14/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

NCMS Technology Showcase: Corpus Christi Army Depot

07/13/2022

Additive & Structural Optimization Updates in Ansys 2022 R1 - Webinar

07/07/2022

Arizona AADM Conference, 2022

06/29/2022

LS-DYNA Updates & Advancements in Ansys 2022 R1 - Webinar

06/23/2022

Simulation Best Practices for Wind Turbine Design - Webinar

06/15/2022

MAPDL Updates & Advancements in Ansys 2022 R1 - Webinar

06/01/2022

Mechanical Updates in Ansys 2022 R1 - pt. 2 Webinar

05/26/2022

Modelling liquid cryogenic rocket engines in Flownex - Webinar

05/25/2022

SMR & Advanced Reactor 2022

05/25/2022

05/24/2022

SMR & Advanced Reactor 2022

05/19/2022

RAPID + tct 2022

05/19/2022

Venture Cafe Roundtable: AI & Healthcare

05/18/2022

Tucson after5 Tech Mixer: World View

05/18/2022

RAPID + tct 2022

More Info

05/18/2022

Signal & Power Integrity Updates in Ansys 2022 R1 - Webinar

05/18/2022

Simulation World 2022

05/17/2022

RAPID + tct 2022

05/11/2022

Experience Stratasys Manufacturing Virtual Event

05/04/2022

Mechanical Meshing Updates in Ansys 2022 R1 - Webinar

04/27/2022

04/22/2022

12TH ANNUAL TUCSON GOLF TOURNAMENT

04/21/2022

04/20/2022

Additional Fluids Updates in Ansys 2022 R1

04/20/2022

Experience Stratasys Tour – Tempe Arizona

04/18/2022

Experience Stratasys Tour - Flagstaff Arizona

04/14/2022

D&M West | MD&M West

04/13/2022

D&M West | MD&M West

04/13/2022

Experience Stratasys Tour - Albuquerque New Mexico

04/12/2022

D&M West | MD&M West

04/12/2022

Experience Stratasys Tour - Los Alamos New Mexico

04/12/2022

Optimizing Engineering Workflows f​​​​or Propulsion System Design

04/07/2022

Experience Stratasys Tour - Austin Texas

04/07/2022

37th Space Symposium - Arizona Space Industry

04/06/2022

Transforming Digital Engineering with Ansys Discovery 2022 R1

04/06/2022

37th Space Symposium - Arizona Space Industry

04/05/2022

37th Space Symposium - Arizona Space Industry

04/04/2022

37th Space Symposium - Arizona Space Industry

03/30/2022

Simulation Best Practices for Vehicle Engineering - Webinar

03/23/2022

03/23/2022

High & Low Frequency Electromagnetics Updates in Ansys 2022 R1

02/24/2022

Arizona Technology Council After 5 Tech Mixer "Pandemic Pivot Pizza Pa

02/23/2022

SciTech Festival: Spend an Hour with 3D Printing Experts

02/11/2022

Webinar: Mechanical overview for Ansys 2022 R1

More Info

02/09/2022

Webinar: Product Development 101 (FAKE)

02/08/2022

Webinar: Navigating the Additive Landscape

01/27/2022

Arizona Technology Council 1st Quarter VIP Tech Mixer

More Info

01/26/2022

Simulation Best Practices for Gas Turbine Design & Development - Webin

More Info

01/19/2022

Arizona Photonics Days

More Info

11/04/2021

ExperienceIT, New Mexico

More Info

11/03/2021

Additive Manufacturing & Structural Optimization in Ansys 2021 R2 - We

More Info

11/03/2021

Optics Valley Technical Series: The Future of Simulation in the Optics

More Info

11/02/2021

SBIR Liftoff AZTC Virtual Breakfast Series

More Info

10/10/2021

Stratasys Mobile Truck Stop - Tucson Arizona

More Info

Search in PADT site

Contact Us

Most of our customers receive their support over the phone or via email. Customers who are close by can also set up a face-to-face appointment with one of our engineers.

For most locations, simply contact us: