3D Design Updates in ANSYS 2019 R2 – Webinar

When it comes to the exploration of rapid 3D design, simulation provides a more efficient and optimized workflow for design engineers looking to streamline product development and improve product performance. The toolkit of flagship ANSYS 3D design products made up of Discovery SpaceClaim, Discovery Live, and Discovery AIM allow users to build, and optimize lighter and smarter products with an interface easier to use than most other simulation products. 

Users can delve deeper into the details of a design with the same accuracy as other, more robust ANSYS tools, all while refining their concept and introducing multiple physics simulations to better account for real-world conditions.

Join PADT’s Simulation Support Manager Ted Harris, for a look at what’s new for this line of products with the release of ANSYS 2019 R2. Explore updates for these three tools including:

  • Shared Topology
  • Meshing
  • Navigation
  • Modal Supports 
  • Multi-physics Coupling
  • Topology Optimization 
  • And much more

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

PADT’s Penchant for Patents

When they walk into PADT’s main office in Tempe, Arizona, the first thing most people notice is our “wall-o-patents.” Over the years, PADT employees have been named on 43 patents. They range from fuel cell membranes to silicon wafer coating to a slew of medical devices. When we received notification that staff members were listed as co-inventor on two patients with numbers over 10,000,000 we thought it was a good excuse to celebrate the years of contributions our engineers have made.

The rich collection highlights the diversity of industries we work on and the ingenuity of our staff. When the companies who own the Intellectual Property (IP) represented on that wall came to PADT looking for assistance with research, development, troubleshooting, and testing of their products they found a partner that did more than carry out tasks. PADT collaborated with them to create novel solutions and approaches that resulted in IP.

You can view all of our patents on our wall… or on our patent page here.

We want to say thank you to our staff and our customers for letting us be part of their innovation.

If you are looking for a partner that can work with you to turn your ideas in into Intellectual Property, please learn about our Product Development team or reach out to info@padtinc.com.

Bring Your Most Imaginative Ideas to Life with Pantone Validation on the Stratasys J750 & J735

If seeing is believing, holding something this vivid is knowing for sure.

The Stratasys J735 and J750 deliver unrivaled aesthetics to your brightest ideas and boldest ambitions with true, full-color capability, texture mapping and color gradients.

3D print prototypes that look, feel and operate like the finished products in multiple materials and colors without sacrificing time for intricacy and complexity. Better communicate designs with vivid, realistic samples, and save on manual post-processing delays and costs.

Stratasys J735 and J750 printers are PANTONE Validated™

This validation makes the Pantone Matching System (PMS) Colors available for the first time in a 3D printing solution. It provides a universal language of color that enables color-critical decisions through every stage of the workflow for brands and manufacturers. It helps define, communicate and control color from inspiration to realization.

Color matching to Pantone Colors in a single click

GrabCAD Print software provides a quicker, more realistic expression of color in your models and prototypes, saving hours over traditional paint matching or iterative color matching processes.

  • Adding Pantone color selection increases the color gamut found within the GrabCAD Print Application and simplifies the color selection process
  • Designers can access the colors directly from GrabCAD Print, selecting Pantone within the Print Settings dialog box. From within this view the user can search for their desired Pantone color or select from the list.

Multiple material selections

This means  you can load up to six materials at once, including any combination of rigid, flexible, transparent or opaque materials and their components.

Double the number of print nozzles

More print heads means you can produce ultra-smooth surfaces and fine details with layer thickness as fine as 0.014 mm—about half the width of a human skin cell.

Discover how you can achieve stronger realism and color matching thanks to the Pantone Validation available on the Stratasys J750 & J735.

Contact the industry experts at PADT via the link below for more information:

All Things ANSYS 038 – Simulating Multibody Dynamics More Accurately with ANSYS Motion

 

Published on: June 3rd, 2019
With: Eric Miller & Jim Peters
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Senior Staff Technologist, Jim Peters for a discussion on the benefits of using ANSYS Motion to enable fast and accurate analysis of rigid and flexible bodies, and give accurate evaluation of physical events through the analysis of the mechanical system as a whole. ANSYS Motion uses four tightly integrated solving schemes: rigid body, flexible body, modal and mesh-free EasyFlex. This gives the user unparalleled capabilities to analyze systems and mechanisms in any desired combination.

If you would like to learn more about this update and see the tools in action, check out PADT’s webinar covering ANSYS Motion here: https://bit.ly/2MsRATh

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Presentation: 3D Printing & Optics

The experts at PADT are often asked to speak at conferences around the country, even around the world. This is a great opportunity for us to present what we do and share what we know. The downside is that we only reach the people in the room. The solve this, we are going back and presenting past live seminars at our desks and recording them on BrightTalk. This is the third of those recordings. To find others go to our BrightTalk Channel

The world of optical systems is a subset of mechanical engineering with unique needs and requirements. Those unique needs also make it an ideal area to apply Additive Manufacturing, also known as 3D Printing.

This is a presentation that we gave at Photonics Days, held at the University of Arizona in Tucson Arizona from January 30th through February 1st of 2019.

You can view the presentation on BrightTALK here:
https://www.brighttalk.com/webcast/15747/360024

Meshing Updates in ANSYS 2019 R2 – Webinar

An intelligent, high-quality mesh is at the core of any effective simulation based model; creating the basis for what will help to drive valuable results for even the most complex engineering problems.

Among a variety of tools in ANSYS 2019 R2 are enhanced meshing capabilities that can help reduce pre-processing time and provide a more streamlined solution.

Join PADT’s Specialist Mechanical Engineer, Joe Woodward for a look at what new meshing capabilities are available in the latest release of ANSYS. This presentation will focus predominately on updates regarding:

ANSYS Mechanical Meshing
Batch Connections
Axisymmetric Sweep
Layered Tetrahedron Enhancements
Local Sizing Enhancements
SpaceClaim Meshing
Parameter Management
Direct Modeling/Meshing
Hex Meshing
Block Decomposition

And much more!

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).


You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

“Equation Based Surface” for Conformal and Non-Planar Antenna Design

ANYSY HFSS provides many options for creating non-planar and conformal shapes. In MCAD you may use shapes such as cylinders or spheres, and with some steps, you can design you antennas on various surfaces. In some applications, it is necessary to study the effect of curvatures and shapes on the antenna performance. For example for wearable antennas it is important to study the effect of bending, crumpling and air-gap between antenna and human body.

Equation Based Surface

One of the tools that HFSS offers and can be used to do parametric sweep or optimization, is “Draw equation based surface”. This can be accessed under “Draw” “Equation Based Surface” or by using “Draw” tab and choosing it from the banner (Fig. 1)

Fig. 1. (a) Select Draw -> Equation Based Surface
Fig. 1. (b) click on the icon that is highlighted

Once this is selected the Equation Based Surface window that opens gives you options to enter the equation with the two variables (_u, _v_) to define a surface. Each point of the surface can be a function of (_u,_v). The range of (_u, _v) will also be determined in this window. The types of functions that are available can be seen in “Edit Equation” window, by clicking on “…” next to X, Y or Z (Fig. 2). Alternatively, the equation can be typed inside this window. Project or Design Variables can also be used or introduced here.

Fig. 2. (a) Equation Based Surface window
Fig. 2. (b) Clikc on the “…” next to X and see the “Edit Equation: window to build the equation for X

For example an elliptical cylinder along y axis can be represented by:

This equation can be entered as shown in Fig. 3.

Fig. 3. Elliptical surface equation

Variation of this equation can be obtained by changing variables R1, R2, L and beta. Two examples are shown in Fig. 4.

Fig. 4. Elliptical surface equation

Application of Equation Based Surface in Conformal and Non-Planar Antennas

To make use of this function to transfer a planar design to a non-planar design of interest, the following steps can be taken:

  • Start with a planar design. Keep in mind that changing the surface shape can change the characteristics of the antenna. It is a good idea to use a parameterized model, to be able to change and optimize the dimensions after transferring the design on a non-planar surface. As an example we started with a planar meandered line antenna that works around 700MHz, as shown in Fig. 5. The model is excited by a wave port. Since the cylindrical surface will be built around y-axis, the model is transferred to a height to allow the substrate surface to be made (Fig 5. b)
Fig. 5. Planar meandered antenna (a) on xy plane, (b) moved to a height of 5cm
  • Next, using equation based surface, create the desired shape and with the same length as the planar substrate. Make sure that the original deisgn is at a higher location. Select the non-planar surface. Use Modeler->Surface->Thicken Sheet … and thicken the surface with the substrate thickenss. Alternatively, by choosing “Draw” tab, one can expand the Sheet dropdown menu and choose Thicken Sheet. Now select the sheet, change the material to the substrate material.
Fig. 6. Thicken the equation based surface to generate the substrate
  • At this point you are ready to transfer the antenna design to the curved surface. Select both traces of the antenna and the curved substrate (as shown in Fig. 7). Then use Modeler->Surface->Project Sheet…, this will transfer the traces to the curved surface. Please note that the original substrate is still remaining. You need not delete it.
Fig. 7. Steps for transferring the design to the curved surface (a)

Fig. 7. Steps for transferring the design to the curved surface (b)

Fig. 7. Steps for transferring the design to the curved surface (c)
  • Next step is to generate the ground plane and move the wave port. In our example design we have a partial ground plane. For ground plane surface we use the same method to generate an equation based surface. Please keep in mind that the Z coordinate of this surface should be the same as substrate minus the thickness of the substrate. (If you thickened the substrate surface to both sides, this should be the height of substrate minus half of the substrate thickness). Once this sheet is generate assign a Perfect E or Finite Conductivity Boundary (by selecting the surface, right click and Assign Boundary). Delete the old planar ground plane.
Fig. 8. Non-planar meandered antenna with non-planar ground

Wave Port Placement using Equation Based Curve

A new wave port can be defined by the following steps:

  • Delete the old port.
  • Use Draw->Equation Based Curve. Mimicking the equation used for ground plane (Fig. 9).
Fig. 9. Use Equation Based Curve to start a new wave port (a) Equation Based Curve definition window (b) wave pot terminal created using equation based curve and sweep along vector
  • Select the line from the Model tree, select Draw->Sweep->Along Vector. Draw a vector in the direction of port height. Then by selecting the SweepAlongVector from Model tree and double clicking, the window allows you to set the correct size of port height and vector start point (Fig. 10).
  • Assign wave port to this new surface.
Fig. 10. Sweep along vector to create the new wave port location

Similar method can be used to generate (sin)^n or (cos)^n surfaces. Some examples are shown in Fig. 11. Fig. 11 (a) shows how the surface was defined.

Fig. 11. (a) Equation based surface definition using “cos” function, (b), (c), & (d) three different surfaces generated by this equation based surface.

Effect of Curvature on Antenna Matching

Bending a substrate can change the transmission line and antenna impedance. By using equation based port the change in transmission line impedance effect is removed. However, the overall radiation surface is also changed that will have effects on S11. The results of S11 for the planar design, cylindrical design (Fig. 8), cos (Fig. 11 b), and cos^3 (Fig. 11 c) designs are shown in Fig. 12. If it is of interest to include the change in the transmission line impedance, the port should be kept in a rectangular shape.

Fig. 12. Effect of curvature on the resonance frequency.

Equation based curves and surfaces can take a bit of time to get used to but with a little practice these methods can really open the door to some sophisticated geometry. It is also interesting to see how much the geometry can impact a simple antenna design, especially with today’s growing popularity in flex circuitry. Be sure to check out this related webinar  that touches on the impact of packaging antennas as well. If you would like more information on how these tools may be able to help you and your design, please let us know at info@padtinc.com.

You can also click here to download a copy of this example.

Four Different Ways to Add Customization to ANSYS Mechanical

ANSYS Mechanical is a very powerful tool right out of the box.  Long gone are the days when an FEA tool was just a solver, and users had to write code to create input files and interpret the results.  Most of the time you never have to write anything to effectively use ANSYS Mechanical. But, users can realize significant gains in productivity and access greater functionality through customization. And it is easy to do.

Before we talk about the four options, we need to remember how the tool, ANSYS Mechanical, is actually structured.  The interface that users interact with is a version of ANSYS Workbench called ANSYS Mechanical. The interface allows users to connect to geometry, build and modify their model, set up their solution, submit a solve, and review results. The solve itself is done in ANSYS Mechanical APDL. This is the original ANSYS Multiphysics program. 

When you press the solve button ANSYS Mechanical writes out commands in the languages used by ANSYS Mechanical APDL, called the ANSYS Parametric Design Language, or APDL.  Yes, that is where ANSYS Mechanical APDL got its name. We like to call it MAPDL for short. (Side note: years ago we started a campaign to call it map-dul. It didn’t work.) Once the file is written, MAPDL is started, the file is read in, the solve happens, and all of the requested output files are written. Then ANSYS Mechanical reads those files and shows results to the user.

Customization Tool 1: Command Snippets for Controlling the Solver

Not every capability that is found in ANSYS Mechanical APDL is exposed in the interface for ANSYS Mechanical.  That is not a problem because users can use the APDL language in ANSYS Mechanical to access the full capability of the solver.  These small pieces of code are called Snippets and they are added to the tree for your ANSYS Mechanical model.  When the solver file is written, ANSYS Mechanical inserts your snippets into the command stream.  Simple and elegant.

PADT has a seminar from back in 2011 that lays it all out.  You can find the PowerPoint Presentation here. We do have plans to update this webinar soon.

This approach is used when you want to access capabilities in the solver that are not supported in the interface but you want to get to those features and keep track of them from inside your ANSYS Mechanical Model.

If you are not familiar with APDL, find a more “seasoned” user to help you. Or you can teach yourself APDL programming with PADT’s Guide to APDL .

Customization Tool 2: ANSYS Customization Toolkit (ACT) for Controlling the User Interface and Accessing the Model

As mentioned above, ANSYS Mechanical is used to define the model and review results.  The ANSYS Customization Toolkit (ACT) is how users customize the user interface, automate tasks in the interface, add tools to the interface, and access the model database. This type of customization can be as simple as a new feature, presented as an app, or it can be used to create a focused tool to streamline a certain type of simulation – what we call a vertical application.

image
A Vertical Application Written in ANSYS ACT by PADT for Automating the Design of Turbine Disks

Unlike APDL, ACT does is not have its own language. It uses Python and is a collection of Application Programmer Interface (API) calls from Python. This is a very powerful toolset that increases in capability at every release.  PADT has written stand alone applications using ACT to reduce simulation time significantly. We have also written features and apps for ourselves and users that make everyday use of ANSYS Mechanical better. 

Do note that ACT is supported in most of the major ANSYS products and more capability is being added across the available programs over time, not just in ANSYS Mechanical. You can also use ACT to connect ANSYS Mechanical to in-house or 3rd party software.

Because this is a standard environment, you can share your ACT applications on the ANSYS App Store found here. Take a look and you can see what users have done with ACT across the ANSYS Product suite, including ANSYS Mechanical.   PADT has two in the library, one for adding a PID controller to your model and the other is a tool for saving your ANSYS Mechanical APDL database.

Another great aspect of ACT is that it is fully documented.  If you go to the Customization Suite documentation in the ANSYS help library you can find everything you need.

Customization Tool 3: APDL for Automating the Solve  

With Code Snippets we talked about using APDL to access solver functions from ANSYS Mechanical that were not supported in ANSYS Mechanical.  You can also use APDL to automate what is going on during the solve.  Every capability in the ANSYS solver is accessible through APDL.

The most common usage of APDL is to create a tool that solves in batch mode. APDL programs are used to carry out tasks without going back to ANSYS Mechanical.  As an example, maybe you want to solve a load step, save some information from the solve, export it, read it in to a 3rd party program, modify it, modify some property in your model, then solve the next load step. You can do all of that with APDL in batch mode.

This is not for the faint of heart, you are getting into complex programming with a custom language. But if you take the time, it can be very powerful.  All of the commands are documented in the ANSYS Mechanical APDL help and details on the language are in the ANSYS Parametric Design Language Guide.  The PADT Blog is full of articles going back over a decade on using APDL in this way.

Customization Tool 4: User Programable Features in the Solver

One of the most powerful capabilities in the ANSYS Mechanical ADPL solver is the ability for end-users to add their own subroutines.  These User Programable Features, or UPF’s, allow you to create your own elements, make custom material models, customize loads, or customize contact behavior.

There are other general purpose FEA tools on the market that heavily publicize their user elements and user materials and they try to use it to differentiate themselves from ANSYS. However, ANSYS Mechanical APDL has always had this capability.  Many universities and companies add new capability to ANSYS using this method.

To learn more about how to do create your own custom version of ANSYS, consult the Programer’s Reference in the ANSYS Help. PADT also has a webinar sharing how to make a custom material here.

Next Steps

The key to successful customization ANSYS is to know your options, understand what you really want to do, and to use the wide range of tools you have available. Everything is documented in the help and this blog has some great examples.  Start small with a simple project and work your way up.

Or, you can leverage PADT’s expertise and contract with PADT to do your customization. This is what a half-dozen companies large and small have done over the years.  We understand ANSYS, we get engineering, and we know how to program. A perfect combination.

Regardless of how you customize ANSYS Mechanical, you will find it a rewording experience.  Greater functionality and more efficient usage are only a few lines of custom code away.

Presentation: If you are not scared, you are doing it wrong! Successful founders take risks

Legacy Presentation Series

The experts at PADT are often asked to speak at conferences around the country, even around the world. This is a great opportunity for us to present what we do and share what we know. The downside is that we only reach the people in the room. The solve this, we are going back and presenting past live seminars at our desks and recording them on BrightTalk. This is the second of those recordings. To find others go to our BrightTalk Channel

Fear can be an incredible motivator, especially in a small and growing business. This talk, originally presented at Phoenix Startup Week in 2018, goes over how being scared can be a good thing.

View the presentation here:
https://www.brighttalk.com/webcast/15747/359366

All Things ANSYS 037 – Optimizing the Industrial Internet of Things with ANSYS Digital Twins

 

Published on: May 20th, 2019
With: Eric Miller & Matt Sutton
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Senior Analyst and Lead Software Developer, Matt Sutton for a discussion on the industrial internet of things, and how ANSYS Digital twins helps companies make confident predictions about future product performance, reduce the cost and risk of unplanned downtime, and improve future product development processes.

If you would like to learn more about this update and see the tools in action, check out PADT’s webinar covering ANSYS Twin Builder here: http://alturl.com/ccjjq

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS

Presentation: Metal 3D Printing is Changing Design, Here is how Design Engineers can Adapt

Legacy Presentation Series:

The experts at PADT are often asked to speak at conferences around the country, even around the world. This is a great opportunity for us to present what we do and share what we know. The downside is that we only reach the people in the room. The solve this, we are going back and presenting past live seminars at our desks and recording them on BrightTalk. This is the first of those recordings. To find others go to our BrightTalk Channel

Metal 3D Printing systems, especially Powder Bed Fusion Additive Manufacturing machines, have made the free-form creation of metal parts directly from CAD a reality. This has freed geometry from the constraints of traditional manufacturing and reducing the product development process. 

This presentation goes over what Design Engineers need to know to adapt to the possibility and constraints of 3D Printing in metal.

View the recording here: https://www.brighttalk.com/webcast/15747/359359

Optimize Product Performance with ANSYS Digital Twins – Webinar

Engineering simulation has traditionally been used for new product design and virtual testing, eliminating the need to build multiple prototypes prior to product launch.

Now, with the emergence of the Industrial Internet of Things (IIoT), simulation is expanding into operations. The IIoT enables engineers to communicate with sensors and actuators on an operating product to capture data and monitor operating parameters. The result is a digital twin of the physical product or process that can be used to monitor real-time prescriptive analytics and test predictive maintenance to optimize asset performance.

Join PADT’s Senior Analyst & Lead Software Developer Matt Sutton for an in depth look at how digital twins created using ANSYS simulation tools optimize the operation of devices or systems, save money by reducing unplanned downtime and enable engineers to test solutions virtually before doing physical repairs.

This webinar will include an overview of technical capabilities, packaging for licensing, and updates made with the release of ANSYS 2019 R1.

Register Here

If this is your first time registering for one of our Bright Talk webinars, simply click the link and fill out the attached form. We promise that the information you provide will only be shared with those promoting the event (PADT).

You will only have to do this once! For all future webinars, you can simply click the link, add the reminder to your calendar and you’re good to go!

3D Printing Infill Styles – the What, When and Why of Using Infill

Have you ever wondered about choosing a plain versus funky infill-style for filament 3D-printing? Amongst the ten standard types (no, the cat infill design is not one of them), some give you high strength, some greatly decrease material use or printing time, and others are purposely tailored with an end-use in mind.

Highly detailed Insight slicing software from Stratasys gives you the widest range of possibilities; the basic versions are also accessible from GrabCAD Print, the direct-CAD-import, cloud-connected slicing software that offers an easy approach for all levels of 3D print users.

A part that is mimicking or replacing a metal design would do best when built with Solid infill to give it weight and heft, while a visual-concept model printed as five different test-versions may work fine with a Sparse infill, saving time and material. Here at PADT we printed a number of sample cubes with open ends to demonstrate a variety of the choices in action. Check out these hints for evaluating each one, and see the chart at the end comparing build-time, weight and consumed material.

Infill choices for 3D printed parts, offered with Stratasys’ GrabCAD Print software. (Image courtesy PADT Inc.)

Basic Infill Patterns

Solid (also called Alternating Raster) This is the default pattern, where each layer has straight fill-lines touching each other, and the layer direction alternates by 90 degrees. This infill uses the most material but offers the highest density; use it when structural integrity and super-low porosity are most important.

Solid (Alternating Raster)

Sparse Raster lines for Sparse infill also run in one direction per layer, alternating by layer, but are widely spaced (the default spacing is 0.080 inches/2 mm). In Insight, or using the Advanced FDM settings in GrabCAD, you can change the width of both the lines and the spaces.

Sparse Double Dense As you can imagine, Sparse Double Dense achieves twice the density of regular Sparse: it deposits in two directions per layer, creating an open grid-pattern that stacks up throughout the part.

Sparse High Density Just to give you one more quick-click option, this pattern effectively sits between Sparse Double Dense and Solid. It lays rasters in a single direction per layer, but not as closely spaced as for Solid.

Hexagram The effect of this pattern looks similar to a honeycomb but it’s formed differently. Each layer gets three sets of raster lines crossing at different angles, forming perfectly aligned columns of hexagons and triangles. Hexagram is time-efficient to build, lightweight and strong in all directions.

Hexagram
Additional infill styles and the options for customizing them within a part, offered within Stratasys Insight 3D printing slicing and set-up software. (Image courtesy PADT Inc.)

Advanced Infill Patterns (via Custom Groups in Insight)

Hexagon By laying down rows of zig-zag lines that alternately bond to each other and bend away, Hexagon produces a classic honeycomb structure (every two rows creates one row of honeycomb). The pattern repeats layer by layer so all vertical channels line up perfectly. The amount of build material used is just about one-third that of Solid but strength is quite good.

Hexagon

Permeable Triangle A layer-by-layer shifting pattern of triangles and straight lines creates a strong infill that builds as quickly as Sparse, but is extremely permeable. It is used for printing sacrificial tooling material (i.e., Stratsys ST130) that will be wrapped with composite material and later dissolved away.

Permeable Triangle

Permeable Tubular This infill is formed by a 16-layer repeating pattern deposited first as eight varying wavy layers aligned to the X axis and then the same eight layers aligned to the Y axis. The resulting structure is a series of vertical cylinders enhanced with strong cross-bars, creating air-flow channels highly suited to tooling used on vacuum work-holding tables.

Permeable Tubular 0.2 Spacing
Permeable Tubular 0.5 Spacing

Gyroid (so cool we printed it twice) The Gyroid pattern belongs to a class of mathematically minimal surfaces, providing infill strength similar to that of a hexagon, but using less material. Since different raster spacings have quite an effect, we printed it first with the default spacing of 0.2 inches and then widened that to 0.5 inches. Print time and material use dropped dramatically.

Gyroid 0.2 Spacing
Gyroid 0.5 Spacing

Schwarz D (Diamond) This alternate style of minimal surface builds in sets of seven different layers along the X-axis, ranging from straight lines to near-sawtooth waves, then flipping to repeat the same seven layers along the Y-axis. The Schwarz D infill balances strength, density and porosity. As with the Gyroid, differences in raster spacing have a big influence on the material use and build-time.

Schwarz Diamond 0.2 Spacing
Schwarz Diamond 0.5 Spacing

Digging Deeper Into Infill Options

Infill Cell Type/0.2 spacing Build Time Weight Material Used
Alternating Raster (Solid) 1 h 57 min 123.77 g 6.29 cu in.
Sparse Double Dense 1 hr 37 min 44.09 g 4.52 cu in.
Hexagon (Honeycomb) 1 h 49 min 37.79 g 2.56 cu in.
Hexagram (3 crossed rasters) 1 h 11 min. 47.61 g 3.03 cu in.
Permeable Triangle 1 h 11 min. 47.67 g 3.04 cu in.
Permeable Tubular – small 2 h 5 min. 43.95 g 2.68 cu in.
Gyroid – small 1 h 48 min. 38.68 g 2.39 cu in.
Schwarz Diamond (D) – small 1 h 35 min. 47.8 g 3.04 cu in.
Infill Cell Type/0.5 spacing Build Time Weight Material Used
Permeable Tubular – Large 1 h 11 min. 21.84 g 1.33 cu in.
Gyroid – Large 57 min. 20.59 g 1.29 cu in.
Schwarz Diamond (D) – Large 58 min. 23.74 g 1.51 cu in.

Hopefully this information helps you perfect your design for optimal strength or minimal material-use or fastest printing. If you’re still not sure which way to go, contact our PADT Manufacturing group: get your questions answered, have some sample parts printed and discover what infill works best for the job at hand.

PADT Inc. is a globally recognized provider of Numerical Simulation, Product Development and 3D Printing products and services. For more information on Insight, GrabCAD and Stratasys products, contact us at info@padtinc.com.

Introducing the Stratasys V650 Flex – Stereolithography Upgraded

The result of over four years of testing, the Stratasys V650 Flex delivers high quality outputs unfailingly, time after time. More than 75,000 hours of collective run time have gone into the V650 Flex; producing more than 150,000 parts in its refinement.

Upgrade to the Stratasys V650 Flex 3D Stereolithography printer and you can add game-changing advances in speed, accuracy and reliability to the established capabilities of Stereolithography. Create smooth-surfaced prototypes, master patterns, large concept models and investment casting patterns more quickly and more precisely than ever.  

In partnership with DSM, Stratasys have configured, pre-qualified and fine-tuned a four-strong range of resins specifically to maximize the productivity, reliability and efficiency of the V650 Flex 3D printer. Create success with thermoplastic elastomers, polyethylene, polypropylene and ABS:

Next-generation stereolithography resins, ideal for investment casting patterns.

Stereolithography accuracy with the look, feel and performance of thermoplastic.

For applications needing strong, stiff, high-heat-resistant composites. Great detail resolution

A clear solution delivering ABS and PBT-like properties for stereolithography.

Thanks to reduced downtime and increased workflow, the Stratasys V650 Flex prints through short power outages, and if you ever need to re-start, you can pick up exactly where you left off. Years of testing have helped deliver not only the stamina to run and run, but also low maintenance needs and high efficiency. To make life even easier, the V650 Flex runs on 110V power, with no need to switch to a 220V power source.

For ease of use, every V650 Flex comes with a user-friendly, touch-enabled interface developed in parallel with SolidView build preparation software. This software contains smart power controls and an Adaptive Power Mode for automated adjustment of laser power, beam size and scan speeds for optimum build performance. 

The V650 Flex also comes equipped with adjustable beam spot sizes from 0.005” to 0.015” that enhance control, detail, smoothness and accuracy. With more precise printing comes better informed decision-making and better chances of success. You have twice the capacity and, to ease workflow further, this production-based machine provides a large VAT for maximum output (build volume 20”W x 20”D x 23”H) and interchangeable VATs.

Through partnering with Stratasys and Stereolithography now comes with an invaluable component: peace of mind. The V650 Flex is backed by the end-to-end and on-demand service and world-class support that is guaranteed with Stratasys. Any field issues get fixed fast, and their 30 years’ experience in 3D printing enable us to help you do more than ever, more efficiently.

Discover how you can work with advanced efficiency thanks to the all new Stratasys V650 Flex.

Contact the industry experts at PADT via the link below for more information:

All Things ANSYS 036 – Updates for Design Engineers in ANSYS 2019 R1 – Discovery Live, AIM, & SpaceClaim

 

Published on: May 6th, 2019
With: Eric Miller, Ted Harris, & Clinton Smith
Description:  

In this episode your host and Co-Founder of PADT, Eric Miller is joined by PADT’s Simulation Support Manager Ted Harris, and CFD Team Lead Engineer Clinton Smith for a round-table discussion regarding new capabilities for Design Engineers in the latest release of the ANSYS Discovery family of products (Live, AIM, & SpaceClaim). Listen as they express their thoughts on exciting new capabilities, long anticipated technical improvements, and speculate at what has yet to come for this disruptive set of tools.

If you would like to learn more about this update and see the tools in action, check out PADT’s webinar covering ANSYS Discovery AIM & Live in 2019 R1 here: shorturl.at/gyKLM

If you have any questions, comments, or would like to suggest a topic for the next episode, shoot us an email at podcast@padtinc.com we would love to hear from you!

Listen:
Subscribe:

@ANSYS #ANSYS