The Advantages of Leveraging HPC with Nimbix – Webinar

Simulation has become even more prevalent in the world of engineering than it was even 5 years ago. Commercial tools have gotten significantly easier to use, whether you are looking at tools embedded within CAD programs or the standalone flagship analysis tools. The driving force behind these changes are to ultimately let engineers and companies understand their design quicker and with more fidelity than before.

High Performance Computing (HPC) has proven to be critical for simulation tools like ANSYS thanks to its ability to help engineers perform a wider range of analyses faster than ever before. PADT is proud to be working with Nimbix, the creators of an award winning HPC platform developed for enterprises and end users who demand performance and ease of use in their process.

Join Nimbix Application & Sales Engineer Adil Noor, and PADT’s Lead Application Engineer, Manoj Mahendran, for a discussion on the benefits of leveraging HPC and Cloud Computing for simulation, along with a look at how PADT has deployed ANSYS on the Nimbix platform.

From this webinar you will learn about:

  • The benefits of using Cloud Computing
  • The capabilities of HPC with ANSYS
  • The advantages Nimbix provides and why PADT leverages them for HPC

This webinar will be taking place on: 
 
Wednesday August 23rd, from 11:00 AM – 12:00 PM MST 
 
Don’t miss this opportunity, register and secure your place today!

Introducing the Stratasys J750 – Webinar

Introducing the Stratasys J750 – Webinar

August 30th, 2017 – 11:00 AM – 12:00 PM MST

The Stratasys J750 3D printer delivers unavailed aesthetic performance including true, full-color capability with the texture mapping and color gradients. Create prototypes that look, feel and operate like finished products, without the need for painting or assembly, thanks to the Stratasys J750’s wide range of material properties.

With this, students can easily experience both the prototyping and testing stages of the manufacturing process, helping to prepare them for what they will experience once they enter the workforce. The high quality materials available with the J750 also allow for the creation of highly intricate and realistic models, perfect for helping medical students with research.

The wide color spectrum, combined with the fine-finish, multi-material capability, let’s the Stratasys J750 produce parts with an incredible array of characteristics. Prototypes that need to look, feel and function like future products are possible in a single print operation, with minimal to no finishing steps, like painting, sanding or assembly.

With such an innovative machine comes a variety of user applications, such as:

  • Image Rapid Prototyping
  • Concept Models
  • Medical Models
  • Jigs & Fixtures
  • Colored Textures

Join PADT’s Sales executive Jeff Nichols and 3D Printing Application Engineer James Barker from 11:00 AM – 12:00 PM MST AZ for an in depth look at how the Stratasys J750 stacks up against it’s competition, and how it’s various attributes help to make it the perfect fit for institutions such as yours!

 

Don’t miss this unique opportunity to bring the future of manufacturing into your classroom or workplace, secure your spot today!

  

Phoenix Business Journal: 4 simple suggestions to deal with all those unread emails

We have all been there. You get back from vacation and you have eight hundred unread emails.  For a lot of us we never actually make our way through them all. In “4 simple suggestions to deal with all those unread emails” I cover some ways to get through that pile and get back to being productive.  If you like it… don’t email me.

Topological Optimization in ANSYS 18.1 – Motorcycle Component Example

We’ve discussed topological optimization in this space before, notably here:

If you’re not familiar with topological or topology optimization, a simple description is that we are using the physics of the problem combined with the finite element computational method to decide what the optimal shape is for a given design space and set of loads and constraints. Typically our goal is to maximize stiffness while reducing weight. We may also be trying to keep maximum stress below a certain value. Frequencies can come into play as well by linking a modal analysis to a topology optimization.

Why is topology optimization important? First, it produces shapes which may be more optimal than we could determine by engineering intuition coupled with trial and error. Second, with the rise of additive manufacturing, it is now much easier and more practical to produce the often complex and organic looking shapes which come out of a topological optimization.

ANSYS, Inc. has really upped the game when it comes to utilizing topology optimization. Starting with version 18.0, topo opt is built in functionality within ANSYS. If you already know ANSYS Mechanical, you already know the tool that’s used. The ANSYS capability uses the proven ANSYS solvers, including HPC capability for efficient solves. Another huge plus is the fact that SpaceClaim is linked right in to the process, allowing us to much more easily make the optimized mesh shape produced by a topological optimization into a more CAD representation set for use in validation simulations, 3D printing, or traditional manufacturing.

The intent of this blog is to show the current process in ANSYS version 18.1 using a simple example of an idealized motorcycle front fork bracket optimization. We don’t claim to be experts on motorcycle design, but we do want to showcase what the technology can do with a simple example. We start with a ‘blob’ or envelope for the geometry of our design space, then perform an optimization based on an assumed set of loads the system will experience. Next we convert the optimized mesh information into solid geometry using ANSYS SpaceClaim, and then perform a validation study on the optimized geometry.

Here we show our starting point – an idealized motorcycle fork with a fairly large blob of geometry. The intent is to let ANSYS come up with an optimal shape for the bracket connecting the two sides of the fork.

The first step of the simulation in this case is a traditional Static Structural simulation within ANSYS Workbench. The starting point for the geometry was ANSYS SpaceClaim, but the initial geometry could have come from any geometry source that ANSYS can read in, meaning most CAD systems as well as Parasolid, SAT, and STEP neutral file formats.
A single set of loads can be used, or multiple load cases can be defined. That’s what we did here, to simulate various sets of loads that the fork assembly might experience during optimization. All or a portion of the load cases can be utilized in the topological optimization, and weighting factors can be used on each set of loads if needed.
Here we see the workflow in the ANSYS Workbench Project Schematic:

Block A is the standard static structural analysis on the original, starting geometry. This includes all load cases needed to describe the operating environment. Block B is the actual topological optimization. Block C is a validation study, performed on the optimized geometry. This step is needed to ensure that the optimized shape still meets our design intent.

Within the topology optimization, we set our objective. He we choose minimizing compliance, which is a standard terminology in topology optimization and we can think of it as the inverse which is maximizing stiffness.

In the static structural analysis, 7 load cases were used to describe different loading situations on the motorcycle fork, and here all have been used in the optimization.
Further, we defined a response constraint, which in this example is to reduce mass (actually retain 15% of the mass):

Another quantity that’s often useful to specify is a minimum member constraint. That will keep the topology optimization from making regions that are too small to 3D print or otherwise manufacture. Here we have specified a minimum member size of 0.3 inches:

Since the topological optimization solution uses the same ANSYS solvers for the finite element solution as a normal solution, we can leverage high performance computing (distributed solvers, typically) to speed up the solution process. Multiple iterations are needed to converge on the topology optimization, so realize that the topo opt process is going to be more computationally expensive than a normal solution.

Once the optimization is complete, we can view the shape the topo opt method has obtained:

Notice that only a portion of the original model has been affected. ANSYS allows us to specify which regions of the model are to be considered for optimization, and which are to be excluded.

Now that we have a shape that looks promising, we still need to perform a validation step, in which we rerun our static simulation with the loads and constraints we expect the fork assembly to experience. To do that, we really want a ‘CAD’ model of the optimized shape. The images shown above show the mesh information that results from the topo opt solution. What we need to do next is leverage the ANSYS SpaceClaim geometry tool to create a solid model from the optimized shape.
A simple beauty in the ANSYS process is that with just a couple of clicks we proceed from Block B to Block C in the Workbench project schematic, and can then work with the optimized shape in SpaceClaim.

As you can see in the above image, SpaceClaim automatically has the original geometry as well as the new, optimized shape. We can do as much or as little to the optimized shape as we need, from smoothing and simplification to adding manufacturing features such as holes, bosses, etc. In this case we simply shrink wrapped it as-is.
Continuing with the validation step, the geometry from SpaceClaim automatically opens in the Mechanical window and we can then re-apply the needed loads and constraints and then solve to determine if the optimized shape truly meets our design objectives. If not, we can make some tweaks and run again.

The above image shows a result plot from the validation step. The geometry efficiently comes through SpaceClaim from the optimization step to the validation step. The needed tools are all nicely contained within ANSYS.

Hopefully this has given you an idea of what can be done with topology optimization in ANSYS as well as how it’s done. Again, if you already know ANSYS Mechanical, you already know the bulk of how to do this. If not, then perhaps what you have seen here will spark a craving to learn. We can’t wait to see what you create.

DustRam: A Great Example of Using 3D Printing for Durable Production Parts

Nothing makes us happier here at PADT than seeing a customer be successful with technology we worked with them on. When Jack King of DustRam came to us for a prototype for a part on his dust free tile removal product it was just the start of a fantastic journey that showed off the power of 3D Printing.  After a few iterations Jack was able to replace his expensive and long lead metal mouthpiece with a plastic one that he could manufacture on demand in his own shop using his Stratasys 3D Printer.

It was such a great story that two publications were interested and wrote far better writeups than I could.

The first is interesting because it is an industry trade magazine for people in the floor installation business. Their perspective is refreshing for those of us who live in the engineering world, getting more into the practical application of the product:

http://digital.bnpmedia.com/publication/?i=422744#{“issue_id”:422744,”page”:52}

This was preceded by a fantastic article in Additive Manufacturing magazine that gets more into the technical side:

http://www.additivemanufacturing.media/articles/3d-printed-device-proves-rugged-enough-for-dust-free-tile-removal-

If you want to learn more about how you can use additive manufacturing to produce yout production hardware, contact us today.

 

Distributed ANSYS 18.1 with the SP-5 Benchmark using an INTEL 1.6TB NVMe

I recently had a chance to run a series of benchmarks on one of our latest CUBE numerical simulation workstations. I was amazed by the impressive benchmark numbers and wanted to share with you the details for the SP-5 benchmark using ANSYS 18.1. Hopefully this information will help you make the best decision the next time you need to upgrade your numerical simulation C Drive from whatever to now is the time to buy a Non-Volitile Memory Express drive. Total speedup using identical CUBE hardware, except for the INTEL DC P3700 NVMe drive @32 Cores is a 1.19x speedup!

  • Time Spent Computing Solution ANSYS SP-5 Benchmark
    • 161.7 seconds vs. 135.6 second
    • ANSYS 17.1 & ANSYS 18.1 Benchmarks

The link below is to a great article that I think will catch you up to speed regarding NVMe, PCIe and SSD Technology.

HDD Magazine hints NVME is coming, I say NVMe is already here…

CUBE w32iP Specifications (July 2017)

  • CUBE Mid-Tower Super Quiet Chassis (900W PS)
  • CPU: 32 INTEL Cores – 2 x INTEL e5-2697A V4 32c@2.6GHz/3.6GHz Turbo
  • OS: INTEL NVMe – 1 x 1.6TB INTEL Enterprise Class SSD
  • Mid-Term Storage: – 1 x 10TB Enterprise Class SATA 6Gbp/s, 256M, Helium sealed
  • RAM: 256GB DDR4-2400MHz LRDIMM RAM
  • GRAPHICS: NVIDIA QUADRO P6000 (24GB GDDR5X RAM)
  • MEDIA: DVD-RW/Audio 7.1 HD
  • Windows 10 Professional

Just how much faster the INTEL NVME drive performs over previously run ANSYS Benchmarks?

Check out the data for yourself:

  1. ANSYS 17.1 – SP-5 Benchmarks
  2. ANSYS Website
  3. HPC Advisory Council
  • ANSYS Benchmark Test Case Information.
  • ANSYS HPC Licensing Packs required for this benchmark
    • I used (2) HPC Packs to unlock all 32 cores.
  • 1.19x Total Speedup!
  • Please contact your local ANSYS Software Sales Representative for more information on purchasing ANSYS HPC Packs. You too may be able to speed up your solve times by unlocking additional compute power!
  • What is a CUBE? For more information regarding our Numerical Simulation workstations and clusters please contact our CUBE Hardware Sales Representative at SALES@PADTINC.COM
    • Designed, tested and configured within your budget. We are happy to help and to  listen to your specific needs.

ANSYS SP-5 Benchmark Details

BGA (V18sp-5)

Analysis Type Static Nonlinear Structural
Number of Degrees of Freedom 6,000,000
Equation Solver Sparse
Matrix Symmetric
 July 2017 TIME SPENT COMPUTING SOLUTION TOTAL CPU TIME FOR MAIN THREAD ELAPSED TIME
CUBE w32iP CUEB w32iP CUBE w32iP
# of Cores CUBE w32iP CUBE w32iP CUBE w32iP
2 1034.3 1073.7 1076
4 594.7 630.3 633
6 431.5 465.7 472
8 333.4 367.9 377
10 268.7 302.6 316
12 243.6 276.5 287
14 223 256.2 264
16 186.8 219.3 227
18 180 212.4 226
20 174.4 207.4 220
22 164.5 197.4 209
24 155.6 188.2 199
26 147.1 179.2 193
28 146.4 178.2 190
30 140.8 168.5 196
31 140.4 164 196
32 135.6 158.1 182
WO/GPU Acceleration WO/GPU Acceleration WO/GPU Acceleration

July 2017, drjm, PADT, Inc.

CUBE W32iP SP-5 Benchmark Graph

CUBE w32iP with INTEL DC P3700 1.6TB

Click Here for more information on the engineering simulation workstations and clusters designed in-house at PADT, Inc.. PADT, Inc. is happy to be a premier re-seller and dealer of Supermicro hardware.

Webinar: Additive Manufacturing & Simulation Driven Design, A Competitive Edge in Aerospace

PADT recently hosted the Aerospace & Defence Form, Arizona Chapter for a talk and a tour. The talk was on “Additive Manufacturing & Simulation Driven Design, A Competitive Edge in Aerospace” and it was very well received.  So well in fact, that we decided it would be good to go ahead and record it and share it. So here it is:

Aerospace engineering has changed in the past decades and the tools and process that are used need to change as well. In this presentation we talk about how Simulation and 3D Printing can be used across the product development process to gain a competitive advantage.  In this webinar PADT shares our experience in apply both critical technologies to aerospace. We talk about what has changed in the industry and why Simulation and Additive Manufacturing are so important to meeting the new challenges. We then go through five trends in each industry and keys to being successful with each trend.

If you are looking to implement 3D Printing (Additive Manufacturing) or any type of simulation for Aerospace, please contact us (info@padtinc.com) so we can work to understand your needs and help you find the right solutions.

 

Installing a Metal 3D Printer: Part 5 (Housekeeping)

Download all 5 parts of this series as a single PDF here.

This is my final post in our 5 part series discussing things we learned installing a metal 3D printer (specifically, a laser powder bed fusion machine). If you haven’t already done so, please read the previous posts using the links below.

If you prefer, you can register for a webinar to be held on July 26, 2017 @ 2pm EDT (US) where I will be summarizing all 5 parts of this blog series. Register by clicking on the image below:

Housekeeping may seem too minor a thing to dedicate a post to, but when it comes to metal 3D printing, this is arguably the single most important thing to do on a regular basis once the equipment, facilities, safety and environmental considerations are addressed up front. In this post, I list some of the activities specific to our Concept Laser MLab Cusing R machine that we do on a routine basis as indicative of the kinds of things that one needs to set aside time to do, in order to maintain a safe working environment. In this post, I break down the housekeeping into the 3D printer, the wet separator and the filter change.

1. The 3D Printer

All 3D printers need to be routinely cleaned, but for powder based metal 3D printers, this needs to be done after every build. Three steps need to be performed during cleaning of the printer:

  • Powder Retrieval: After the build, the powder is either still in the dose/feed chamber or not. All powder that is not in the dose chamber needs to be brushed to the overflow chamber for recycling. While it is possible to vacuum this powder, that is not recommended since it results in greater loss of powder and also increases the burden on cleaning the vacuum and creating wet waste.
  • Process Chamber Cleaning: The process chamber after a build gets covered with fine combustion particles (soot) that need to be wiped away, as shown in Figure 1. The recommendation is to do this cleaning using lint-free or clean room wipes moistened with an ammonia based cleaner like Windex Original.
  • Lens Cleaning: Special lens cleaning wipes are to be used to clean the protective lens that separates the chamber from the laser. Standard lens cleaning wipes can be used for this, in a gentle single-pass movement.

It is important to wear appropriate PPE and also NOT contaminate the lens. Improper or irregular cleaning will result in soot particles interfering in subsequent builds. Soot particles can occasionally seen in subsequent builds especially when the inert gas and the ventilator (circulating fan) are turned on – this is more likely to happen if the chamber is not routinely and properly cleaned.

Figure 1. Post-build cleaning of the 3D printer and required materials

2. Wet Separator

The wet separator (vacuum) sucks up stray powder and suspends it in a water column. The metal particles will descend to the bottom of the water column (as shown in Figure 2) and need to be routinely cleaned out. This cleaning procedure is recommended daily for reactive metals – failing this, the metal particles will weld themselves to the metal container and prove to be very difficult to scrape out. For non-reactive metals, a daily flush may be excessive (since this will add to the cost in terms of labor and disposal) and a weekly routine may be preferable for a wet separator that serves 1-2 machines.

To reduce the water needed to flush out the powder sludge at the bottom, a standard pump sprayer is very effective. Further reduction in water usage and disposal can be achieved by a filtration device such as the one developed by the folks at Kinetic Filtration.

Figure 2. Cleaning a wet separator

 

3. Filter Change

Filters need to be changed periodically as shown in Figure 3. A video below (set to start at the 2:58 mark) shows how the filter change is performed for our MLab, for a non-reactive metal, so I shall not describe the procedure further. A reactive metal alloy filter needs to be stored in water to passivate it at all times, even through disposal. Other OEMs recommend sand and other materials, so it is important to follow the specific instructions provided by your supplier for passivation.

Figure 3. Removing, passivating and disposing the filter

 

Summary

Good housekeeping for metal 3D printing is vital and more than just aesthetic – there is a modest chance that failing to follow your supplier’s instructions on one or more of the items above will result in a safety incident. This is especially true for reactive alloys, where filter changes are recommended after each build and wet separator clean on a daily basis.

Disclaimers

  • This is intended to supplement the supplier training you must receive before using the equipment and not meant to replace it – in case of conflicting information, your supplier’s training and equipment requirements override any discussion here. PADT and the author assume no legal responsibilities for any decisions or actions taken by the readers of this document.
  • My personal experience derives specifically from the use of Laser-based metal 3D printing tools, specifically Concept Laser’s MLab Cusing R equipment. I expect majority of this information to be of use to users of other laser based powder bed fusion metal systems and to a lesser extent to Electron Beam systems, but have no personal experience to vouch for this.

~

Final Thoughts

This concludes my 5-part post on what we learned installing a metal 3D printer. If you have any thoughts on the content or would like to discuss this subject further, please let me know by messaging me on LinkedIn or by sending an email to info@padtinc.com, citing this blog post. I will be happy to include any suggestions in my posts with due credit.

Thank you for reading – I hope this has added value to the discussion on safely and effectively advancing metal 3D printing technology.

Silicon Desert Insider: Millennials in tech – Turning what makes them different into an advantage

It is an earned privilege for older generations to make fun of younger ones.  And my generation loves to bemoan those damn “Millennials!” with their phones, their laziness, and their sense of entitlement.  But in reality they are just different and good business people know how to make different work for them.  I explore how to take advantage of that in “Millennials in tech: Turning what makes them different into an advantage”  This is our third guest blog post for the Silicon Desert insider portion of the AZ Business Magazine.

Phoenix Business Journal: ​Is ‘cybersecurity’ the Y2K of this generation?

I am sick and tired of cyber security fear mongers hijacking so many technical discussion.  Even meetings on STEM education seem to always devolve into a discussion on CyberSecurity.  The last time this happened to me it reminded me of what it was like back in 1998 and 1999 when IT Consultants were spreading fear in order to charge huge fees to solve problems with the Y2K that many programs had. So I asked the question “​Is ‘cybersecurity’ the Y2K of this generation?” and if the hysteria being spread is actually bad for solving these real and serious problems.

Getting to Know PADT: Support Cleaning Apparatus (SCA) Manufacturing and Support

This is the third installment in our review of all the different products and services PADT offers our customers. As we add more, they will be available here.  As always, if you have any questions don’t hesitate to reach out to info@padtinc.com or give us a call at 1-800-293-PADT.

PADT is in the business of helping people who make products.  So most people think of us as a provider of tools and services.  What they do not know is that PADT actually has a few of its own products.  The most successful of these is our line of Support Cleaning Apparatus systems, abbreviated as SCA.  These devices are used to remove soluble support material from parts 3D printed in Stratasys Fused Deposition Modeling Systems. They are robust machines manufactured and serviced by PADT, but sold through the Stratasys worldwide sales channel. As of July of 2017, over 10,800 units have been delivered to Stratasys.

Optimized Performance for Hands-Off Part Cleaning

The Stratasys 3D Printing systems that use Fused Deposition Modeling extrude plastic through a heated nozzle to build parts one layer at a time.  There are actually two nozzles. One puts down the building material and the other a support material that is dissolved in warm water that is slightly base.  The best way to remove that support material is to put it into a warm bath where the part is gently tumbled so that the water can works its way evenly into the part.  Stratasys tried several solutions for a companion washing system and eventually came to PADT and asked if we would try our hand at building a robust and efficient system.

The result was the SCA-1200.  Launched at the end of 2008 it met the design requirements for reliability, part cleaning time, and noise.  Over 7,000 of these systems were shipped and saw heavy usage. In fact, if you have a Stratasys FDM system there is a good chance you have an SCA-1200.  It contained a unique shower head design that was optimized with simulation, and a modular assembly that could be repaired easily in the field.

Based upon the success and lessons learned from the SCA-1200, we released the SCA-1200HT in 2014.  With the same basic form factor, this design replaced the off-the-shelf magnetically coupled pump with a simpler and more reliable custom design from PADT. The new unit also had a more pleasing visual design, several usability enhancements, and a greater temperature range. It has sold over 3,000 units and continues to be a popular system.  The latest release includes a no-temperature setting that allows it to be used to clean Stratasys Polyjet parts.

The success of both system lead to a request to look at building a larger machine that could clean more parts at one time as well as larger parts.  The SCA 3600 has three times the volume but shares many internal parts with the SCA-1200HT.  Both of the new systems are doing well in the field with even better reliability and faster part cleaning times. They are also simpler to debug and repair.

The SCA systems are sold as stand alone devices or are bundled with key Stratasys FDM machines.  You can learn more about them on our SCA page:  www.padtinc.com/sca or you can contact whoever you buy your Stratasys equipment from.

Here is a video for the SCA-1200HT that talks all about what it does:

Practicing what We Preach

One of the most rewarding aspects of designing and manufacturing the SCA family of products was that it forced us to practice what we preach. We talk to companies every day about using simulation, 3D Printing, design for manufacturing, proper product development processes, and many more things needed to get a product right.  With the SCA we were the customer. We had to Walk the Walk or stop talking the talk.

 

It has been a phenomenal experience that has made us even better at helping our customers produce their new products. We used CFD to optimize the gentle agitation design and shower head and worked closely with our vendors to minimize the cost of manufacturing.  The worst part was that when the schedule slipped, we couldn’t blame the customer (only slightly joking).  One of the best set of lessons came from doing the repair and refurbishment of systems that failed. Even though the failure rate was low, we learned a lot and were able to make improvements to future designs. Now when we sit across from a customer and talk about the design, test, and manufacture of their product, we can really say that we understand where they are coming from.

 

 

 

 

 

Announcement: Affordable Metal 3D Printing from Desktop Metal Added to PADT Portfolio

PADT is pleased to announce that it has partnered with Desktop Metal to resell its office-friendly and affordable metal 3D Printing solution. The partnership will also allow PADT to integrate this exciting new technology into its 3D Printer maintenance and part printing services. Desktop Metal’s new system is unique to the industry because it is a complete solution with a patented anti-sintering material that enables easily removed supports and the creation of complete assemblies. With the proprietary sintering furnace the DM Studio System delivers accurate parts quickly.  PADT will be representing this new solution in Arizona, Colorado, New Mexico, and Utah.

“We are very excited to fill this gap in our product offering,” said Rey Chu, co-owner and director of manufacturing technology at PADT. “It enables us to serve customers who need stronger properties than plastic additive manufacturing systems can offer, but who don’t need a direct laser melting solution. We researched our options and watched the development of many different products. We knew Desktop Metal had the right solution when we learned that it had developed a complete package that is easy to use.”

The DM Studio System™ is based on the Metal Injection Molding (MIM) process and will start shipping this September. It is the first office-friendly platform for metal 3D printing and is considerably less expensive than existing technology. The Studio System will be sold as a package for $120,000. This includes the metal 3D printer, debinder, and microwave-enhanced sintering furnace.

As a leader in additive manufacturing for more than 20 years, PADT is a resource for customers who need 3D Printing as a service, or who need their own systems in-house. The DM Studio System™ will compliment the complete line of Stratasys FDM and Polyjet systems that the PADT resells as well as direct laser melting systems from our partner Concept Laser. Our company’s expertise with fused deposition modeling, sintering, and MIM also make us uniquely qualified to represent this solution.

“Our team is looking forward to getting this technology in front of customers,” said PADT’s Manager of Hardware Sales, Mario Vargas. “Metal 3D Printing is something our customers have wanted to add, but they could not find a turn-key solution for prototyping with various metal materials. Desktop Metal leveraged its expertise in metallurgy and software to deliver a complete system that can be run in an office environment. This is very compelling for many of our customers across industries.”

In the coming months, PADT will be setting up seminars and contacting customers across the Southwest to help educate the user community on the unique value proposition of the DM Studio System™. Anyone interested in learning more can reach out to info@padtinc.com or call 480.813.4884, technical experts are available to explain and answer any questions.

Save the date!

To show off this exciting technology we will be having putting on a DesktopMetal Studio System Road Show in August. Register now!

To learn more right now you can:

Installing a Metal 3D Printer: Part 4 (Environmental)

Download all 5 parts of this series as a single PDF here.

What waste streams are generated in powder-based metal 3D printing? Are they hazardous? How should they be disposed responsibly?

This is the fourth part of a 5-part series discussing things we learned installing a metal 3D printer (specifically, a laser powder bed fusion machine). If you haven’t already done so, please read the previous parts using the links below.

If you prefer, you can register for a webinar to be held on July 26 @ 2pm EDT (US) where I will be summarizing all 5 parts of this blog series. Register by clicking on the image below:

1. Sources of Waste

As shown in Figure 1 below, metal powder used in this process ends up in dry and wet waste. The dry waste can be composed of wipes and gloves with powder and soot, and the wet waste is mostly composed of water and suspended metal particles (from the wet separator and ultrasonic cleaner), and for reactive alloys, can also consist of filter cartridges that need to be suspended in water throughout. Because the wastes contain metal powders, we must stop and ask if this is safe for sending to our landfills and into our sewers where there is a risk of contaminating groundwater and creating other long term environmental havoc.

Thus, the first question is: are these wastes hazardous?

Fig 1. Powder Life Cycle

2. Is this Waste Hazardous?

There are two sources for this information: the EPA (in the US) and the powder supplier’s data sheets. It helps to begin by understanding some definitions – statements in italics are quoted from the EPA, the rest of the text is mine.

  • Waste: “A waste is any solid, liquid, or contained gaseous material that is discarded by being disposed of, burned or incinerated, or recycled
  • Hazardous Waste: There are several types of hazardous waste and associated definitions of each. The two main categories are:
    • Listed Waste: “Your waste is considered hazardous if it appears on one of four lists published in the Code of Federal Regulations (40 CFR Part 261).” I have looked at this list and to the best of my knowledge, no metal powders of concern to the metal 3D printing process appear on this list (as of July 10, 2017). The metal powders currently used are also not considered acute hazards.
    • Characteristic Waste: In addition to listed wastes, the EPA specifies certain characteristics that a waste may possess (even if not listed) that would make it hazardous. In the context of metal powders, the potentially relevant categories are:
      • “It catches fire under certain conditions. This is known as an ignitable waste”.
      • “It is harmful or fatal when ingested or absorbed, or it leaches toxic chemicals into the soil or ground water when disposed of on land. This is known as a toxic waste.”

Due to the generality of the definitions of “Characteristic Waste,” and the lack of available data in the public domain such as from a TCLP test (Toxicity Characteristic Leaching Procedure), it is hard to dismiss these as not being relevant. For each of our waste streams, consider the arguments below:

  • Dry Waste: We know that given the right conditions and an ignition source, that these powders, especially reactive alloys and combustion products, can ignite.
  • Wet Waste: We also know that while water serves as a passivation for powders, we cannot guarantee that the powder will always stay in wet state if it is not disposed as such. Evaporation, for example, can leave behind combustible powder.

Another source of hazard information is the Safety Data Sheet (SDS) or Material Safety Data Sheet (MSDS). Some metal powders are more hazardous than others, so when planning, consider looking at all the alloys you may possibly be using in the future and ask for SDS sheets on all of them. One example, is of Ti6Al4V powder below, clearly showing significant hazards present.

Fig 2. Sample hazards identification from SDS (shown here for Ti6Al4V)

3. What Regulations do I need to be aware of?

The EPA established three categories of waste generators in their regulations, listed below along with the relevant quantity of waste generated and stored, for our purposes (visit EPA’s site for the full list, this is not comprehensive) – EPA cites these numbers in hundreds and thousands of kilograms, hence the strange numbers below (in lbs):

Note this is the sum total of all hazardous wastes your site is generating (in our case, dry and wet wastes combined), not a limit per category. Depending on what category you fall in, you will need to follow EPA’s regulations, available here. Additionally, some states may have additional regulations and this is where I only have studied this problem for my home state of Arizona, which is in line with the EPA’s federal guidelines and does not, to the best of my knowledge, impose additional restrictions. The full list by state is here. If you are a “Very Small Quantity Generator” as we are at PADT, the regulations are fairly straightforward and involve three items (quoted from the EPA’s site) – the requirements are more stringent for larger quantities.

  • VSQGs must identify all the hazardous waste generated.
  • VSQGs may not accumulate more than 1,000 kilograms of hazardous waste at any time.
  • VSQGs must ensure that hazardous waste is delivered to a person or facility who is authorized to manage it.

At PADT, we contract with an industrial waste disposal company that picks up and replaces our waste containers. Yes, this adds cost to the process and at least one company has developed a method to significantly reduce wet waste (which tends to be the larger of the two) by employing a filtration device. Similar innovations and a general focus on reducing waste can drive these costs down.

4. Opinion

As with all regulations, one can approach them by focusing on the specificity of the language. While this is important, it is also useful to seek to understand the intent of the regulation. When it comes to these wastes, I ask if I would be comfortable carrying it in my car and disposing of it in my hypothetical backyard landfill (dry waste) or my local water body (wet waste) – and the answer to both, for me, is a NO. So why should I ask my city to do this? This is understandably an exaggerated way of looking at the problem, but I believe at a minimum, serves as a risk-conservative upper-bound that is useful when addressing uncertainty in these matters.

You can read the final installment of this series, on housekeeping, here.

5. References

  1. EPA, Hazardous Waste Generators Home Page
  2. EPA, Categories of Waste Generators
  3. EPA e-CFR, Title 40, Part 261
  4. US Environmental Agencies by state 

Disclaimers

  • This is intended to supplement the supplier training you must receive before using the equipment and not meant to replace it – in case of conflicting information, your supplier’s training and equipment requirements override any discussion here.
  • Local, state and federal regulations vary and are important – partner with your local environmental authorities when making decisions
  • My personal experience derives specifically from the use of Laser-based metal 3D printing tools, specifically Concept Laser’s MLab Cusing R equipment. I expect majority of this information to be of use to users of other laser based powder bed fusion metal systems and to a lesser extent to Electron Beam systems, but have no personal experience to vouch for this.
  • PADT and the author assume no legal responsibilities for any decisions or actions taken by the readers of this document or of subsequent information generated from it.

Video Tips – Two-way connection between Solidworks and ANSYS HFSS

This video will show you how you can set up a two-way connection between Solidworks and ANSYS HFSS so you can modify dimensions as you are iterating through designs from within HFSS itself. This prevents the need for creating several different CAD model iterations within Solidworks and allows a more seamless workflow.  Note that this process also works for the other ANSYS Electromagnetic tools such as ANSYS Maxwell.

Phoenix Business Journal: Why architecture matters

I’m an engineer. If pushed I will tell you that function should dominate design and that spending time and resources on aesthetics or styling is a waste of money. But a little voice in my head would be screaming “No! Wrong!” because there is value in the visual beauty of something. Nowhere is that truer than in architecture