Hike Run Ski Pi(e): Team Building at PADT

padt-pi-day-platesLast week was a big, and diverse, week for "team building" at PADT.  We learned some things and "bonded" in not-as-nerdy as you would think ways. A fun week had by all, with a lot of hard work thrown in between.  Over the years we have learned that we need to take a break now and then and do something "other" and mingle with people from different parts of the company. 

PADT Running Team

The group preparing for this year's Pat's Run is over half way through their training.  Everyone is getting stronger and faster and we are all pleased with the fact that we don't feel like we are going to pass out at the end of a training session. A sign that Physix has been doing a great job.  We also got our team shirts:

padt-running-team-shirts

Look for us at the race, we will not be hard to find.

Albuquerque Hike

While visiting Albuquerque, I was able to have some informal "team building" with Jeff Strain in the Albuquerque office.  We headed up to the Sandia mountain foothills and hiked Emudito Canyon.  A nice afternoon climb past some very beautiful scenery.  I was reminded that Albuquerque is also a mile high… pant pant pant.

padt-sandia-mountain-hike-2015

The trail head is just down the street from Hank and Marie's house in Breaking Bad.  

2nd Annual Colorado Office Ski Trip (ACOST)

On Friday the PADT team in Colorado, accompanied by a two of us from the Tempe office, headed up to Breckenridge for a fantastic day of skiing.  Their was a bit of fresh snow and no real lines on the lift.  Fun was had by all even with a very wide range in ski/board skills.  

padt-anual-colorado-office-ski-day-2015-1

[Left to Right: Cara, Pat, Manoj, Stephen, Doug, Eric, Ben (Eric's son)]

Pi Day

Back in Tempe we celebrating 3/14/15 a day early. We like Pi day and we are nerdy, but not nerdy enough to come in to the office on a Saturday to celebrate that nerdiness.  We only have one Tauist in our ranks, so there was no open conflict.  We decided to make moon pies, cookies with ice cream between.

 padt-pi-day-moon-pie-1

padt-pi-day-moon-pie-setup

 

Three Jobs Open at PADT

3-Guys-PADTPADT currently has three job openings, two sales and one engineering.  If you are interested, or know of someone that is, please use the links below to learn more.

If you are smart, proactive, love technology, and believe in win-win interactions with customers, then PADT might be the place for you.

Electrical Engineer, High-Frequency Simulation: RF/Antenna
Account Manager: ANSYS Simulation Software
Account Manager, Flownex Sales

Node & Element Selection in ANSYS Mechanical: Some Good News and Some Bad News (fixed)… And Some More Good News

ansys-mechanical-selection-f1First, some good news… 

In Workbench R14.5, ANSYS introduced nodal Named Selections, and in R15.0, they have added the ability to create Named Selections of elements. So now you can make groups of nodes or elements just like you can in MAPDL.  You can use these name selections for result plots to show just specific portion of the results. ansys-mechanical-selection-f2

In R15.0, you can right-click on a Name Selection in the tree and hit, “Create Nodal Name Selection”. This creates a Name Selection of all the nodes associated with the particular piece of geometry in the original Named Selection, whether that is a body, surface, edge, or vertex. Highlighting the nodal named selection in the tree will then take you to the Worksheet where you can add rows for limiting the selection of nodes to a location value or some other criteria.

ansys-mechanical-selection-f3

This is also where you can add a row to “Convert” the “Mesh Node” entity type to “Mesh Element”. The Mesh Element entity type has a criterion choice for how the elements are selected from the nodes.  

ansys-mechanical-selection-f4

“Any Node” will select all the elements that have any of their nodes in the list of nodes that make up the current named selection.  “All Nodes” will select only those elements that have all of their nodes in the current set. Many of you may already know this, and it is a great new feature, but there is a catch, and that brings us to the telling of the “Bad News”.

The Bad News…

After noticing the generation time of the name selection drastically increase when using the “All Nodes” criteria, I ran a small test case. With just a cube meshed to two different refinement levels, I tracked the generation time for the element name selection using the two different criterion. Here is what I found.

ansys-mechanical-selection-f5

I am not even going to speculate what is different with the “All Nodes” node-checking algorithm, but an increase in element count by a factor of eight caused more than a 13300% increase in generation time. But look at the generation time for the “Any Node” criteria. It stayed right on par for the different mesh sizes.

So, back to the Good News, and the Really Good News…

The Good News is that you can avoid the long generation times, in R15.0, by not using the “All Nodes” criteria. The Really Good news is that when I ran the same test in R16.0, I got 6.0 Sec for the “Any Node” criteria, and 6.3 Seconds for the “All Nodes” criteria. So ANSYS has already fixed the problem in R16.0, which just gives you another reason to upgrade. If you are going to continue using R15.0, then just stay away from the “All Nodes” criteria for the element named Selections. It is much better to use the location based filtering to cut down your nodal selection so that you can use the “Any Node” criteria.  

ansys-mechanical-selection-f6

Encore Lunch and Learn: Designing and Simulating Products for 3D Printing

3dprinting-production-1PADT would like to invite you to a free seminar or webinar on how to use 3D Printing to manufacture parts for your products.

In February, PADT held a Lunch and Learn with the AZ Tech Council on "Designing and Simulating Products for 3D Printing."  The event sold out and we received a lot of interest in being able to attend over the web. So we have scheduled a second version of this presentation to be given live at CEI in Phoenix on March 23rd, 2015 that will also be broadcast over the web.  

Here is some info on the presentation:

This proven technology has moved from prototyping to tooling and now the creation of final parts.  However, you can't just print your existing design. PADT will cover the techniques and processes needed to evaluate existing designs to find parts that can be switched to 3D printing as well as how to design new parts to take advantage of 3D printing. 

3dprinting-production-2

When:
Monday, March 23, 2015
11:30am – 1:00pm 
Where:
CEI
275 N. GateWay Drive
Phoenix, AZ 85034
Webinar:
WebEx
Please Register, we will send you login information 
  Lunch will be Served for those attending live

We will begin with a review on the current state of 3D Printing technologies, including the creation of accurate and usable metal parts. That will be followed with design guidelines and processes and finishing up with a look at how you can use simulation to drive the design your 3D Printed components so that they work.

Please Register

Lunch is included so we need a headcount for those joining us at CEI, and we need to send login information to those attending over the web.  So Please Register

 

Bringing Life to a Sculpture

Art_man-STL-PointsRecent development in 3D scanning technologies have made a wide variety of application a possibility.  3D scanners can capture data on the shape and texture of real world object and transform it into useable 3D CAD model. Our structured light 3D scanners generate quality high density mesh results which are then used for rapid prototyping, computer-aided engineering (CAE) analysis, reverse engineering, or inspection to 3D CAD data. The scanner works by using a high resolution camera and lens pair to analyze the deformed projection pattern on an object.

Per customer request, we 3D scanned a custom hand crafted character sculpture and separate standing base. We efficiently scanned the sculpture and base using a turntable allowing for quicker and more accurate data. The scanned data was then sent to the computer for alignment or registration into a common reference system and merged into a complete STL model. Next, we optimized the mesh results for 3D printing and printed the model using our FDM printer.

Art_Man

Using PADT’s structured light scanner and FDM printer we were able to capture and produce a detailed model which brought the character to life.

3D-Scan-Sculpture

Once the object was scanned we sent him to the 3D Printer. Here you can see him being made:

Art_Man-FDM-Building

And this is a shot of him taking his post build bath, to remove the support material from the print:

Art_Man-FDM-Bath

And the final part, looking good:

Art_Man-FDM-Part

The customer can use the scanned model to create different sized versions of their sculpture.

Learn more about our 3D Scanning capabilities on our website, or simply contact us at rp@padtinc.com

3d-optical-scanner-1

geocube-hardware-pics

The Computer

The key to converting large scans into accurate 3D models revolves around having the right computer.  A complex model like this with so much detail can really bog down on a normal design workstation, so PADT developed a special line of CUBE Computers just for scanning, called geoCUBES.  For this project Ademola used a geoCUBE w4 which is crammed full of goodies.  Note the use of six Solid State Drives in raid to remove the I/O bottleneck along with an NVIDIA QUADRO K6000 which helps in visualization as a graphics card and as a GPU in doing all of the number crunching needed.

  • INTEL XEON e5-1620V2 – 4Cores@3.7GHz
  • HD Audio 7.1
  • 64GB DDR3-1866 ECC REG RAM
  • Hardware RAID Controller
  • 6 x 240GB Enterprise Class SSD’s
  • NVIDIA QUADRO K6000
  • Blu-Ray BDXL Combo Drive
  • 3D Connexion SpaceNavigator 3D Mouse

Job Opening at PADT: ANSYS Account Manager

PADT_Logo_Color_100x50PADT is looking for proactive and technical sales professionals interested in joining our team to represent ANSYS software products.  There are multiple openings with opportunities in Southern California, the Phoenix Arizona metro area, Denver Colorado, Salt Lake City Utah, and Albuquerque New Mexico.  Selling ANSYS with PADT is hard but rewarding work where you get to interface with smart and capable customers and work with one of the most respected ANSYS resellers in the world.  Learn more on our career page or simply send your resume to jobs@padtinc.com.

padt-jobs-footer-pics

3D Printing and Supply Chain Management

ISM-3D-Printing-CoverAs 3D Printing matures it is impacting a larger area within manufacturing companies.  Supply chain management is a key part of any organization that makes physical parts, and 3D Printing has a big, and sometimes ignored, impact there.  The Institute for Supply Chain Management made the topic their cover article for the March issue of their magazine: Inside Supply Management. The article does a good job of pointing out the realities of 3D Printing in a real manufacturing environment. 

The article featured input from PADT and other experts in the area.  Even if you are not directly involved in the supply chain side of things, it is worth a read to understand how the technology impacts things.  The section on building a business case for 3D Printing is especially useful.

There is a nice sidebar that covered some of the lessons we have learned here at PADT:

  • Don't Cheap Out – get a commercial quality 3D Printer that doesn't cut corners
  • It's not for everyone – make sure that 3D Printing has a real benefit for your company
  • Understand quality needs – quality is different with 3D Printed parts, know this and work with it
  • Set traceability standards – you need to know where your material came from and where the parts you make end up

If you have any questions about 3D Printing and supply chain, or any other impact of the technology, don't hesitate to contact us and we will be happy to talk about it. 

ISM-Mag-shot

Major Milestone Achieved: 3D Printing of a Full Turbine Engine

3d-printed-jet-engine

Not long ago the sages in the additive manufacturing world said "Someday in the future we will be able to print a complete Turbine Engine."  That someday is now, much sooner than many of us predicted.  Researchers at Monash University in Australia recently created a modified version of a Safron Microturbo Auxiliary Power Unit using 3D Printing.  The whole thing.  Milestone Achieved.

The best article on this amazing story is on the Melbourne Examiner page:
www.smh.com.au/technology/sci-tech/3d-printing-melbourne-engineers-print-jet-engine-in-world-first-20150226-13pfv1.html 

Turbine Engines are really the peak of machine design. They contain every nasty thing you might run into in other machines, but spin faster and run hotter.  It's hard stuff. The geometry is difficult, lots of small features and holes, and significant assembly and tolerance constraints.  Getting a demonstrator built like this is a huge deal.  As a former turbine engine engineer and a long time user of additive manufacturing, I'm amazed. 

Check out their video:

The "3d Printer" they used was a huge Concept Laser Direct Laser Melting system.  The technology uses a laser to draw on the top of a bed of powder medal, melting the medal in small pools the bind and create a fully dense part with cast like properties.  They used three different metals: nickel alloy, titanium, and aluminum.

Concept-Laser-3d-printed-turbine-enginePADT has chosen to partner with Concept Laser for our metal 3D Printing strategy, which gives us additional excitement for this sucessful project.  

Now that someone has achieved this milestone, the industry can move forward with confidence that even more can be done with metal 3D Printing.  Much was learned in the creation of this advanced device that we can build on and apply to other industries and applications. 

Much is said in the twittersphere and press about printing food or custom dog tags, but this sort of high value industrial application is where the real impact of 3D Printing will be felt. It shows that companies can develop new more efficient products in less time and that are not constrained by traditional manufacturing methods. 

PHX Startup Week Going with Tours at CEI and PADT StartUPLab

PADT_StartUpLabs-1Phoenix Startup Week has started!  One of the key events on the first day centered on tours and talks at CEI, which kikced off with tours of PADT StartUpLabs, the advanced 3D Printing facility for startups located at CEI. This was followed with CEI tours and an afternoon of talks on Medical Device startups.  Then the tours repeated for those who could not make the early ones.

There is a great article in AZ Tech Beat today covering the event and what  we are doing at PADT StartupLabs:

Space travel to startups, 3D printing without limits – PHX Startup Week – AZ Tech Beat

IMG_5445Attendance was great, with a cross section of startups, established companies, the press, and people active in supporting the startup community.  The visits gave us a change to explain how PADT is working with CEI to provide 3D Printing and design expertise to new companies at a reduced price, focusing on getting them over the early stages of product development quickly and effectively. 

Right now PADT StartUpLabs is focused on working with other tenants at CEI.  Engineers from PADT hold regular office hours to answer questions about 3D Printing and product development.  Clients can also set up a consultation with anyone on our staff to talk about simulation, product design or test, quality systems, or manufacturing. The goal is to eventually expand these services to a broader audience. 

This week's events are being followed closely on the twittersphere: #PHXStartupWeek, #yesphx. Or if you are middle-aged like me and use Facebook, like Phoenix Startup Week.

aztechbeat-padt-startuplabs-1

Startup Week is still going and there are many more informative events. Check out the website to learn more and follow AZ Tech Beat's feed as they cover things to see what happened. 

We hope to run in to lots of you at upcoming events!

Not in Phoenix?

Many of you who read this blog are not from the Phoenix area. You may be wondering "What, a vibrant startup community? I thought Phoenix was old people and nutty gun-totting right-wing nut-jobs?"  Well, we certainly have a few of  those but since WWII when large aerospace and electronics companies moved to the valley, Phoenix has been a major high-technology hub.  It is an easy place to start a business and has all the resources and talent to be successful.  PADT has been helping startups in the area for over 20 years now, and we continue to see a steady increase in the number and diversity of new companies that we interact with.  So don't believe what you see on the news, this is a vibrant, high-tech place with great people and a business friendly outlook, affordable housing, and weather that doesn't force us to spend the morning shoveling out our driveways.  

Put 3D Simulation Results into 3D PDF with VCollab

VCollab_Shaded_Logo_FinalPDF has become a great, versatile format for sharing electronic documents. But engineers doing simulation were stuck with only being able to include 2D images in their PDF files. With the release of a new Plugin for VCollab Professional, you can include 3D model and result plots right in your PDF files.  A great way to archive, a great way to share.

You can see the results by checking out these two examples:

Here is a small example of a car front: vcollab-3dPDF-example-carfront

And here is the full car: vcollab-3dPDF-example-car

You can read the full press release here.

  vcollab-3dpdf-airplane1    

PADT uses VCollab to convert our CAD geometry and simulation results in to smaller, portable formats that can be imbedded in to PowerPoint, Word, websites, portals, PLM/PDM systems, etc…  It is a great way to view complicated data without having to fire up the full simulation tool.  And the files are much smaller than a full result file, so it also is a great way to get key results off of a remote server and interact with them quickly and efficiently.

Now with 3D PDF support the end user doesn't even have to have a Microsoft Office product or be on the web, they can just view it in their Adobe Acrobat reader.  If you are interested in trying out VCollab to make 3D PDF content or for any other application, contact us at sales@padtinc.com or call 1.800.293.PADT or 480.813.4884. We can arrange for a demonstration over the web, provide you with a trial copy, and work out the best configuration for your needs. 

Stratasys Platinum Partner Status Achieved by PADT

  Stratasys_PLAT_Partner_2015

A lot is going on in the various sales groups at PADT after having such a strong 2014.   We are very pleased to announce that the latest result of outstanding efforts across the board is PADT's new status as a Stratasys Platinum Commercial Partner. Stratasys, Ltd (SSYS), the leading provider of Additive Manufacturing (3D Printing) systems, designates only the best of their reseller channel as Platinum Partners. To obtain this highest level, PADT not only had to meet aggressive sales goals, we also had to make significant investments in resources and people.  In 2014 we exceeded those sales goals by 25% and we opened up a fourth sales and support office, located just south of Salt Lake City in Murray, Utah. 

Here is a pixture of our Additive Manufacturing Sales Manager, Mario Vargas, with one of PADT's principals, Ward Rand, pointing out our latest addition to our "wall o' awards."

  PADT-Stratasys-Platinum-Partner-Award-2015

You can read more about this on our press release here.

PADT has been selling Stratasys equipment for over a decade, and we have been using their systems for over fifteen years.  We have seen them go from a few basic systems to a full offering of solutions from desktop hobby solutions to full production manufacturing centers. This year the team was able to help more customers find the right Additive Manufacturing system for their specific needs. In fact, many of the systems we sold in 2015 were additional machines or upgrades to current machines, showing strong customer satisfaction with Stratasys solutions. 

connex3_with_cmy_helmets     400mc_solo  

We could never have achieved last years success and Platinum status without a fantastic team. Our sales professionals, application engineers, field service engineers, and support staff all strive to provide the highly technical win-win sales experience that PADT has become known for. They truly believe in this technology and are truly enthusiastic about finding new and better ways for our customers to apply it.

Those customers also deserve a heartfelt thank you for being such a pleasure to work with.  Every day we get to interact with the full spectrum of users, from the preverbal garage startup to major aerospace corporations; and everything between.  They teach us something new every day and we are always proud of the value that Stratasys and PADT are able to deliver to their product development efforts. 

If you want to learn more about 3D Printing and why Stratasys systems have continued to outsell the closest competitors for years, please contact Kathryn Pesta at 480.813.4884 or kathryn.pesta@padtinc.com.  She will put you in touch with one of our sales people located in your local area.  Or you can visit www.padtinc.com/stratasys to learn more about the technology. 

 

Using Bright CM to Manage a Linux Cluster

COD_Cluster-Bright-1What goes into managing a Linux HPC (High Performance Computing) cluster?

There is an endless list of software, tools and configurations that are required or recommended for efficiently managing a shared HPC cluster environment.

A shared HPC cluster typically has many layers that deliver a usable environment that doesn’t have to  depend on the users coordinating closely or the system administrators being superheroes of late-night patching and just-in-time recovery.

bright-f1

Figure 1 Typical Layers of a shared HPC cluster.

For each layer in the diagram above there are numerous open-source and paid software tools to choose from. The thing to note is that it’s not just a choice. System administrators have to work with the user requirements, compatibility tweaks and ease of implementation and use to come up with a perfect recipe (much like carrot cake). Once the choices have been made, users and system administrators have to train, learn and start utilizing these tools.

HPC @ PADT Inc.

At PADT Inc. we have several Linux based HPC clusters that are in high demand. Our Clusters are based on the Cube High Value Performance Computing (HVPC) systems and are designed to optimize the performance of numerical simulation software. We were facing several challenges that are common with building & maintaining HPC clusters. The challenges were mainly in the areas of security, imaging and deployment, resource management, monitoring and maintenance.

To solve these challenges there is an endless list of software tools and packages both open-source and commercial. Each one of these tools comes with its own steep learning curve and mounting time to test & implement.

Enter – Bright Computing

After testing several tools we came across the Bright Computing – Bright Cluster Manager (Bright CM). Bright CM eliminates the need for system administrators to manually install and configure the most common HPC cluster components. On top of that it provides the majority of the HPC software packages, tools and software libraries in their default software image.

A Bright CM cluster installation starts off with an extremely useful installation wizard that asks all of the right questions while giving the user full control to customize the installation. With a note pad, a couple of hours and a basic understanding of HPC clusters, you are ready to install your applications.

bright-f2

Figure 2. Installation Wizard

An all knowing dashboard helps system admins master and monitor the cluster(s) or if you prefer the CLI CM shell provides full functionality through command line. From the dashboard system admins can manage multiple clusters down to the finest details.

bright-f3

Figure 3. Cluster Management Interface.

An extensive cluster monitoring interface allows systems admins, users and key stakeholders to generate and view detailed reports about the different cluster components.

bright-f4

Figure 4. Cluster Monitoring Interface.

Bright CM has proven to be a valuable tool in managing and optimizing our HPC environment. For further information and a demo of Bright Cluster Manager please contact sales@padtinc.com.

10 Useful New Features in ANSYS Mechanical 16.0

ansys-mechanical-16-heade2r

PADT is excited about the plethora of new features in release 16.0 of ANSYS products.  After sorting through the list of new features in Mechanical, here are 10 enhancements that we found to be particularly useful for general applications.


1: Mesh Display Style

This new option in the details view for the mesh branch makes it easy to visualize mesh quality items such as aspect ratio, skewness, element quality, etc.  The default style is body color, but it can be changed in the details to element quality, for example, as shown here:

ansys-mechanical-16-f1a

Figure 1. A. – Mesh Display Style Set to Element Quality

figure1b

Figure 1. B. – Element Quality Plot After Additional Mesh Settings

ansys-mechanical-16-f1c

Figure 1. C. – Accessing Display Style in the Mesh Details


2: Image to Clipboard

How many times have you either done a print screen > paste into editing tool > crop or done an image to file to get the plots you need into tools such as Word and PowerPoint?  The new Image to Clipboard menu pick streamlines this process.  Now, just get the image the way you want it in the geometry view, right click, and select Image to Clipboard.  Or just use Ctrl + C.  When you paste, you’ll be pasting the contents of that view window directly.  Here’s what it looks like:

ansys-mechanical-16-f2

Figure 2 – Right Click, Image to Clip Board


3: Beam Contact Formulation

This was a beta feature at 15.0, but if you didn’t get a chance to try it out, it’s now fully supported at 16.0.  The idea here is that instead of the ‘traditional’ bonded contact methods (using the augmented Lagrange or pure penalty formulation) or the Multi-Point Constraint (MPC) bonded option, we now have a new choice of beam contact.  This option utilizes internally-created massless linear beam elements to connect the two sides of a contact interface together.  This can be more efficient than the traditional formulations and can avoid the over constraints that can happen if multiple contact regions utilizing the MPC option end up generating constraint equations that tend to conflict with each other.

ansys-mechanical-16-f3

Figure 3 – Beam Formulation for Bonded Contact


4: Nonlinear Adaptive Region

If you have ever been frustrated by the error message in the Solution Information window that says, “Element xyz … has become highly distorted…”, version 16.0 adds a new tool to our toolbox with the Nonlinear Adaptive Region capability.  This capability is in its infancy stage at 16.0, but in the right circumstances it allows the solution to recover from highly distorted elements by pausing, remeshing, and then continuing.  We plan on publishing more details on this capability soon, but for now please know that it exists and more can learned in the 16.0 Mechanical Help.  There are a lot of restrictions on when it can work, but a big one is that it only works for elements that become overly deformed due to large and nonuniform deformation, meaning not due to unstable materials, numerical instabilities, or structures that are unstable due to buckling effects.

As shown in figure 4. A., a Nonlinear Adaptive Region can be inserted under the Solution branch.  It is scoped to bodies.  Options and controls are set in the details view.

ansys-mechanical-16-f4a

Figure 4. A. – Nonlinear Adaptive Region

If the solver encounters a ‘qualifying event’ that triggers a remesh, the solver output will inform us like this:

 

**** REGENERATE MESH AT SUBSTEP     5 OF LOAD STEP      1 BECAUSE OF
      NONLINEAR ADAPTIVE CRITERIA

 

 

 

 

AmsMesher(ANSYS Mechanical Solver Mesher),Graph based ANSYS Meshing EXtension,v0.96.03b
(c)ANSYS,Inc. v160-20141009
  Platform           :  Windows 7 6.1.7601
  Arguments          :  F:\Program Files\ANSYS Inc\v160\ANSYS\bin\winx64\AnsMechSolverMesh.exe
                     :  -m
                     :  G:\Testing\16.0\_ProjectScratch\Scr692\file_inpRzn_0001.cdb
                     :  –slayers=2
                     :  –silent=0
                     :  –aconcave=15.0000
                     :  –aconvex=15.0000
                     :  –gszratio=1.0000
  Seed elements      :  _RZNDISTEL block

– 17:6:17 2015-2-11

  ===================================================================
  == Mesh quality metrics comparison                                
  ===================================================================
  Element Average    :  ——–Source——–+——–Target——–
  ..Skewness(Volume) :    4.0450e-001             4.1063e-001        
  ..Aspect Ratio     :    2.3411e+000             2.4331e+000        
  Domain Volume      :    8.6109e-003             8.6345e-003        

  Worst Element      :  ——–Source——–+——–Target——–
  ..Skewness(Volume) :    0.8564  (e552     )      0.7487  (e2217    )   
  ..Aspect Ratio     :    4.9731  (e434     )      6.8070  (e2236    )   

  ===================================================================
  == Remeshing result statistics                                    
  ===================================================================
  Domain(s)          :   1      
  Region(s)          :   1      
  Patche(s)          :   7      
  nNode[New]         :   39      
  nElem[New/Eff/Src] :   79 / 92 / 2076      

  Peak memory        :   10 MB

– 17:6:17 2015-2-11
– AmsMesher run completed in 0.225 seconds

  ========================= End Run =================================
  ===================================================================

 **** NEW MESH HAS BEEN CREATED SUCCESSFULLY. CONTINUE TO SOLVE. 

Results item tabular listings will show that a remesh has occurred, as shown in figure 4. B.

ansys-mechanical-16-f4b

Figure 4. B. – Results Table Indicating a Remesh Occurred in the Nonlinear Adaptive Region

ansys-mechanical-16-f4c

Figure 4. C. – Before and After Remesh Due to Nonlinear Adaptive Region


5: Thermal Fluid Flow via Thermal ‘Pipes’

This has also been a beta option in prior releases, but nicely, at 16.0 it becomes a production feature.  The idea here is that we can use the ANSYS Mechanical APDL FLUID116 elements in Mechanical, without needing a command object.  These fluid elements have temperature as their degree of freedom in this case, and enable the effects of one dimensional fluid flow.  This means we have a reduced order model for capturing heat transfer due to a fluid moving through some kind of cavity without having to explicitly model that cavity.  The pipe ‘path’ is specified using a line body.

The line body gets defined with a cross section in CAD, and is tagged as a named selection in Mechanical.  This thermal pipe can then interact on appropriate surfaces in your model via a convection load.  Once the convection load is applied on appropriate surfaces in your model, the Fluid Flow option can then be set to Yes, and the line body is specified as the appropriate named selection.  Appropriate BC’s need to be applied to the line body, such as temperature constraints and mass flow rate, as shown in figure 5.

ansys-mechanical-16-f5

Figure 5 – Thermal “Pipe” Line Body at Top, Showing Applied Boundary Conditions


6: Solver Pivot Checking Control

This new option under Analysis Settings > Solver Controls allows you to potentially continue an analysis that has stopped due to pivoting issues, meaning a model that’s not fully constrained or one that is having trouble due to contact pairs not being fully in contact. 

The options are Program Controlled, Warning, Error, and Off.  The Warning setting is the one to use if you want the solver to continue after any pivoting issues have occurred.  The Error setting means that the solver will stop if pivoting issues occur.  The Off setting results in no pivot checking to occur, while Program Controlled, which is the default, means that the solver will decide.

ansys-mechanical-16-f6

Figure 6 – Solver Pivot Checking Controls Under Analysis Settings


7: Contact Result Trackers

This new feature allows you to more closely track contact status data while the solution is running, or after it has completed.  This capability uses the .cnd file that is created during the solution in the solver directory.  It is useful because it gives you more information on the behavior of your contact regions during solution so you can have more confidence that things are progressing well or potentially stop the solution and take corrective action if they are not.  The tracker objects get inserted under the Solution Information branch, as shown in figure 7. A.

ansys-mechanical-16-f7a

Figure 7. A. – Contact Trackers Inserted Under Solution Information

A large variety of quantities can be selected to track, such as Number Contacting, Number Sticking, Gap, Penetration, etc.

ansys-mechanical-16-f7b

Figure 7. B. – Contact Results Tracker Settings in the Details View

Contact results tracker quantities can be viewed in real time during the solution, as shown in figure 7. C.

ansys-mechanical-16-f7c

Figure 7. C. – Contact Results Tracker Showing Gap Decreasing as the Solution Progresses


8: Tree Filtering

For large assemblies or other complex models, there are useful enhancements in how the tree can be filtered, including the ability to create Groups.  Groups can consist of tree entities that are geometry, coordinate systems, connection features, boundary conditions, or even results.  Grouping is accomplished as easily as selecting the desired items in the tree, then right clicking to specify Group, as shown in Figure 8. A.

ansys-mechanical-16-f8a

Figure 8. A. – Grouping Displacements

A new folder in the tree is then created which can be named something useful.  Figure 8. B. shows the displacement boundary condition group (folder) after it was given a name.

ansys-mechanical-16-f8b

Figure 8. B. – Group of Displacement BC’s, Given a Meaningful Name

It’s easy to right click and Ungroup if needed, and there is also a Group Similar Objects option which allows you to select just one item in the tree and easily group all similar items by right clicking.


9: Results Set Listing Enhancements

In addition to the information on remeshing that we mentioned back in useful new feature number 4, there is a new capability to right click in the tabular listing of results and then right click to create total deformation or equivalent stress results.  This capability can make it faster to create a deformation or stress plot for a particular time point or result set of interest.

The procedure to do this is:

  • Left click on the Solution branch in the tree.
  • Left click on the desired Results set in Tabular Data
  • Right click on that results set and select Create Total Deformation Results or Create Equivalent Stress Results, as shown in figure 9.

The result of these steps will be a new result item in the tree, waiting for you to evaluate so you can see the new results plot.

ansys-mechanical-16-f9

Figure 9 – Right Click in Solution Tabular Data to Create Deformation or Equivalent Stress Result Items


10: Explode View

We’ve saved a fun one for last, the new Explode View capability.  This allows you to incrementally ‘explode’ the view of your assemblies, making it potentially easier to visualize the parts and interaction between parts that make up the assembly.  To use this feature, make sure the Explode View Options toolbar is turned on in your View settings.  There are several options for the ‘explosion center’, such as the assembly center or the global or a user defined coordinate system.

ansys-mechanical-16-f10a 

Figure 10. A. – The Explode View Options Toolbar

As you can see in figure 10. A., there is a slider that allows you to control the ‘level’ of view explosion.  Keep in mind this is just a visual tool and does nothing to the coordinates of the parts in your assemblies.

Figures 10. B. and 10. C. show various slider settings for the exploded view of an assembly.

ansys-mechanical-16-f10b

Figure 10. B. – Explode View Level 3

ansys-mechanical-16-f10c

Figure 10. C. – Explode View Level 4


This concludes our tour of 10 useful new features in ANSYS Mechanical 16.0.  We hope you find this information helps you get your ANSYS Mechanical simulations completed more efficiently.  There are lots and lots of other new features that we didn’t mention here.  The Release Notes in the Help covers a lot of them.  We’ll be writing more about some of the things we mentioned here as well as some of the other new features soon.  

PADT’s ANSYS Sales Team Celebrates Sales Record for 2014

2014 was both a challenging and rewarding year at PADT. One area of the company that achieved success last year was the ANSYS Sales team.  Lead by Bob Calvin, our account  managers Oren Raz and Patrick Barnett worked with the support of our technical team  throughout the year to help our customers find the right solution for their simulation needs. All that hard work resulted in a record year of sales for ANSYS products by PADT.

A big "Thank You" needs to go out to all of our fantastic customers who make selling and supporting this tool such a pleasure. Our success is a direct result of the success that they are having in the application of ANSYS, Inc. technology to improve their products and their product development process. I know that sounds kind of "salesy" but it is true.  We keep selling more of this stuff for one simple reason, it works. 

And making it work is also the job of our technical support team, our engineers who serve as application engineers, and the business support staff that takes care of the details. 

 This week we were lucky to have Bob Thibeault, the new ANSYS Director North America Channel, and Clark Cox, the ANSYS Channel Account Manager, visit Phoenix and we were able to get a picture with them as we placed our 6th annual sales achievement medal on our "wall o' awards."

PADT-2014-ANSYS-Sales-Achievement-Award
2014 Accomplished – Putting the medal on the wall
(L to R) Clark Cox, Bob Thibeault, Ward Rand, Eric Miller, Bob Calvin

Things are already off to a great start for 2015 and we hope to be working with even more customers as we help them explore new and profitable ways to apply this technology. 

Quick Tip: Concatenating Text Files Using ANSYS Mechanical APDL

So you have text output from some ANSYS analysis and you wish you could just do this:

cat lift.txt  cop.txt drag.txt >> results.txt

and you are writing an ANSYS macro and want it to run on all platforms.  The following macro will use APDL commands to join the files together. 

macro1.mac

/inquire,linesin1,lines,lift,txt

*sread,str1array,lift,txt,,80,,linesin1

/inquire,linesin2,lines,cop,txt

*sread,str2array,cop,txt,,80,,linesin2

/inquire,linesin3,lines,drag,txt

*sread,str3array,drag,txt,,80,,linesin3

*cfopen,results,txt

*vlen,linesin1

*vwrite,str1array(1)

%80S

*vlen,linesin2

*vwrite,str2array(1)

%80S

*vlen,linesin3

*vwrite,str3array(1)

%80S

*cfclose

Bonus: If you want to strip some lines off of the top or read less than all the lines, you can pass additional arguments to *sread:

/inquire,linesin1,lines,lift,txt

Lines_skip=5

Lines_read=linesin1-lines_skip

*sread,str1array,lift,txt,,80,lines_skip,lines_read